

Centre for Energy Research

ORGANOFUNCTIONAL SILICA NANOMATERIALS FOR ENERGY AND ENVIRONMENTAL APPLICATIONS

Selay Sert Çok^{1,2}, Adél Len¹, Zoltán Dudás¹

¹Ege University, Chemical Engineering Department, İzmir, TURKEY ²Centre for Energy Research, Neutron Spectroscopy Department, Budapest, HUNGARY

BNC Seminars

Budapest-HUNGARY, 25. 04. 2024

SILICA BASED NANOMATERIALS

AMORPHOUS SILICA NANOMATERIALS- AEROGELS & XEROGELS

Aerogels are amongst the lightest solids known!

IUPAC 2022 Top Ten Emerging Technologies in Chemistry!

As a "miracle material" they possesses

- a highly porous microstructure with an air volume of 85~99.8%,
- having a pearl necklace-like network of loosely packed and bonded particles.

SILICA AEROGELS

Sert Çok, S., and Gizli, N., Ceramics International, Volume 46, 2020, 27789.

With outstanding properties:

- low density (0.01-0.03 g/cm³)
- optical transparency (~99% in the visible region)
- high acoustic insulation (low sound velocity of 100 m/s),
- high-temperature resistance (>800°C),
- high specific surface area (100-1500 m^2/g)
- Ultra-low thermal conductivity (20-50 mW/mK)

The availability of silica-aerogel related commercial products are still limited in the market so far, due to:

- the fragile structure and
- time-consuming and laborious synthesis
- and cost-intensive production (supercritical drying) technology.

Luckily, the versatility of the sol-gel method allows:

- ✓ the incorporation of different organic functional groups to silica network for improving their low mechanical strength
- ✓ tuning their hydrophobic profile.
- Providing functionality for target applications

Silica xerogels prepared with conventional tetraalkoxysilanes such as tetraethylorthosilicate (TEOS), tetramethylorthosilicate (TMOS) are rich in surface silanol groups (Si-OH) which are the main source of hydrophilicity.

Si-OH polar groups can be replaced with hydrolytically stable Si-R (R=alkyl or aryl) groups

R: OC,H,

Sert Çok, S., and Gizli, N., International Journal of Heat and Mass Transfer, Volume 188, 2022, 122618.

Side Benefits of Hydrophobic Behaviour

Self-Cleaning Ability

LOTUS EFFECT!

Bacteria-Repelling Ability LOW ENERGY SURFACES!

Oil/Organic Solvent Adsorption Ability

Moisture Resistent Thermal Insulation Ability

Organofunctionalized silica aerogels can be obtained either by

Secondary Si particle,

size of 10 nm

Sert Çok, S., and Gizli, N., International Journal of Heat and Mass Transfer, Volume 188, 2022, 122618.

In both strategies, organically modified silica precursors (i.e., alkylsilanes or arylsilanes of type $R_{4-x}Si(OR')_x$ serve as the chemical modifiers of the silica particles derived from the silicon alkoxide (Si(OR')₄)) precursor.

Silylated Aerogel

Synthesized Hydrophobic Aerogels

Primary Si particle,

Sert Çok, S., and Gizli, N., Ceramics International, Volume 46, 2020, 27789.

ORGANICALLY MODIFIED SILICA (ORMOSIL) AEROGELS

 $\begin{array}{c} OCH_3 & O\\ H_3CO-Si & O\\ OCH_3 & O\\ OCH_3 & CH_2 \end{array}$

3-methacryloxypropyltrimethoxysilane

3-Glycidyloxypropyltrimethoxysilane

Vinyltrimethoxysilane

(3-Aminopropyl)trimethoxysilane

Benefits from:

- functionality coming from organic groups
- high surface area and stability of inorganic silica host

Organofunctional Silanes

11

Methyltrimethoxysilane

- ➢ time-saving
- looser solid matrix
- possiblity to retain monolithic structure
- Effective in achieving high hydrophobicity
- Slightly a time-consuming strategy

Structure-activity relationship

INTRINSIC PROPERTIES

• Porosity

- Density
- Pore Size
- Particle Size
- Pore Distribution
- Versatile surface

ACTIVITY

- Lightweight form
- High Specific Surface Area
- Low thermal conductivity
- Low dielectric constant
- Low refractive index
- Tunable transparency
- Tunable Hydrophobicity
- Multiple Composition
- Flexibility
- High mechanical strength

SO FAR..

s

ORGANICALLY MODIFIED SILICA (ORMOSIL) AEROGELS AS THERMAL INSULATORS

Sert Çok, S., and Gizli, N., Int J of Heat and Mass Transfer, Volume 188, 2022, 122618.

Samples	S-MTMS	S-MTES	S-VTMS	S-MEMO	S-GLYMO
Physical Appearance		C?	19 09 49 49		
Density (ka/m³)	92	120	114	380	457
Porosity (%)	95.8	94.5	94.8	82.7	79.2
Gelation time (h)	0.5	1	2	8	8
Total synthesis time (h)	49	69	72	48	48

Microstructure

d uniformly particles aggregated as clusters ores and fine globular aggregated morphology articles

the clusters consisted of densely packed nanoparticles more compact morphology

some large pores existed

Chemical Properties

Hydrophobicity

Sample ID	SA-MTMS	SA-MTES	SA-VTMS	SA-MEMO	SA-GLYMO
Contact Angle Image	0	0	9	þ	-
Contact Angle Value (°)	141	147	140	120	-

Textural Properties

SAMPLE ID PROPERTIES	SA-MTMS	SA-MTES	SA-VTMS	SA-MEMO	SA-GLYMO
S _{BET} (m ² /g)	367	315	308	326	531
D (nm)	2.3	2.8	3.2	3.7	6

Thermal Stability

-SA-MTMS -SA-MTES -SA-VTMS -SA-MEMO -SA-GLYMO -SA-MTMS -SA-MTES -SA-MEMO -SA-GLYMO -SA-GLYMO -SA-MTMS -SA-MTES -SA-WEMO -SA-GLYMO -SA-MTMS -SA-WEMO -S

17

DEVELOPMENT OF VINYL/METHYL DECORATED SILICA-BASED AEROGEL-LIKE MATERIALS AND THEIR PERFORMANCE EVALUATION AS NOVEL ADSORBENTS FOR OIL/ORGANIC SOLVENTS

Chemical functionality the and microstructural variations induced by the vinyl substitution, various complementary characterization techniques like:

- ²⁹Si-NMR.
- Small angle neutron/X-ray scatterings (SANS and SAXS)

in addition to basic characterizations like

- FTIR,
- N₂ Sorption
- SEM.

Pore Properties- N₂ **Sorption**

Sample ID	Surface Area Multipoint BET (m²/g)	Total Pore Volume (cm³/g)	DR Method Micropore Volume (cm³/g)	NLDFT average pore diameter (nm)	Bulk Density (g/cm³)	Porosity (%)	Volumetric Shrinkage (%)
VT-0	792	1.75	0.250	8.14	0.072	94.9	-
VT-25	1021	1.84	0.340	4.09	0.098	93.1	-
VT-50	889	1.70	0.400	4.88	0.131	90.8	-
VT-75	855	1.18	0.310	6.07	0.110	92.3	-
VT-100	145	0.19	0.027	4.09	0.115	91.9	4.6
VM-0	8.7	0.1	-	-	0.109	92.3	5.9
VM-25	44	0.07	-	-	0.182	87.2	21.2
VM-50	16	0.08	0.009	-	0.095	93.3	6.8
VM-75	21	0.05	0.010	-	0.087	93.9	8.1
VM-100	4.4	0.03	0.002	-	0.125	91.2	5.8

Microstructure-SEM

INTRODUCTION – SANS measurements

Low-Q Guinier (1/Q⁰) region: Gives the details about the particle size of the material

1/Q¹ region: Gives the details about the porosity the material

Porod (1/Q⁴⁾ region: Gives the details about the surface properties of the material

Microstructure- SANS

Fitted SANS parameters for the VT and VM series

Sample	р	Rg (Å)	Estimated diameter (nm)	Sample	SANS p
VT-0	2.04 ± 0.01	115 ± 1	30	VM-0	3.82 ± 0.03
VT-25	2.38 ± 0.01	211 ± 2	55	VM-25	3.84 ± 0.04
VT-50	2.63 ± 0.01	150 ± 2	39	VM-50	3.70 ± 0.03
VT-75	3.02 ± 0.01	108 ± 1	28	VM-75	3.53 ± 0.03
VT-100	4.00 ± 0.03	-	_	VM-100	3.71 ± 0.04

- VT-0 -75 samples showed volume fractal-like behavior characteristic for multilevel particle system.
- The VT-100 sample showed smooth interfaces between the pores and micrometer-sized particles.
- The VT series showed average estimated particle sizes from 28 to 55 nm, except for the VT-100.
- The VM series does not contain pores or particles in the size range of 20 nm to 100 nm.
- The VM shows fractal-like behavior with the calculated p exponents
- Characteristic of surface fractals and describes a rough interface between the micrometric pores and particles.

Sert Çok S., Koç F., Len A., Gizli N., Dudás Z., The role of surface and structural properties on the adsorptive behavior of vinyl-methyl decorated silica aerogel-like hybrids for oil/organic solvent clean-up practices, 2023, Separation and Purification Technology, Vol.334, 125958.

SURFACE PROPERTIES- CONTACT ANGLE MEASUREMENTS

OIL/ORGANIC SOLVENT SORPTION STUDIES

- All samples reached over 90% of their capacity after less than 5 min of exposure, confirming fast sorption kinetics.
- VT-100 and VM-50 had the highest uptake capacity for the majority of the pollutants.

FEASIBILITY OF METHYLATED SILICA XEROGELS AS SUPERHYDROPHOBIC, SELF CLEANING MATERIALS WITH BACTERIA REPELLING PROPERTY

MTMS content (MTMS/TEOS) was varied 0%, 25%, 50%, 75%, 100% by vol.

To improve the methyl functionality, heat treatment at 250°C for 4 h was applied to all samples.

MT-0-S MT-25-S MT-50-S MT-75-S MT-100-S

MT-100-	5		
MT-75	-5 🕑		
MT-5	o-s		
	мт-25-5		
		Ref*	

Sample ID	Surface Area, m²/g	Ave. Diame	Pore ter, nm	Total po cm	ore vol., ¹³ /g	Exp.bulk density, g/cm ³	Porosity, %	% linear shrinkage		
	S _{bet}	d _{p,BET}	d_p^*	V _{p,BET}	V _p *	$ ho_b$				
MT-100- S	39	1.4	1014	0.12	9.89	0.096	95	2.86		
MT-75-S	302	11	100	0.99	7.57	0.121	92	3.57		
MT-50-S	613	1.7	34	4.25	5.32	0.166	88	-		
MT-25-S	844	1.4	24	4.05	5.06	0.173	87	-		
	*: properties calculated depending on experimental bulk and skeletal density									

Sert Çok S., Koç F., Dudás Z., Gizli N., Methyl Functionality of Monolithic Silica Xerogels Synthesized via the Co-gelation Approach Combined with Surface Silylation, 2023, Gels, Vol.9, 33.

SEM MICROGRAPHS

Sert Çok S., Koç F., Dudás Z., Gizli N., Methyl Functionality of Monolithic Silica Xerogels Synthesized via the Co-gelation Approach Combined with Surface Silylation, 2023, Gels, Vol.9, 33.

Bacterial Adhesion Tests:

- Staphylococcus aureus and Escherichia coli O157:H7 were selected as reference gram-positive and gram-negative bacteria.
- Working cultures were obtained by inoculating them into tryptic soy broth.
- Aerobic incubation of the strains was carried out at 37 °C for 24 hours (≈ 9 CFU/ml).
- Before the inoculation, the hydrophobic aerogels and hydrophilic aerogel as a reference were well sterilized by submerging them into 70 % Ethanol.
- Inoculation was carried out under ambient conditions for 6 hours.
- After inoculation, bacterial attachments on both hydrophilic and hydrophobic aerogels were observed by SEM analysis.

SEM MICROGRAPHS OF HYDROPHILIC AND HYDROPHOBIC AEROGELS

Hydrophilic Reference Aerogels

E.Coli

S.aureus

E.Coli Adhesion

- ✓ E.Coli adhesion was restricted in the entire series compared to reference samples.
- ✓ On the other hand, the most intense bacterial adhesion was observed in MT-25-S and MT-50-samples and decreased significantly in MT-75-S and MT-100-S samples depending on the methyl content.

MT-75-S

MT-100-S

S.Aureus Adhesion

 ✓ S.Aureus adhesion was prevented much better in all samples than E.Coli adhesion.

 While S. Aureus adhesion was only evident in the MT-25-S sample with low methyl content, MT-50-S, MT-75-S and MT-100-S samples showed almost no bacterial attachment in the scanned areas.

MT-100-S

MT-75-S

SELF-CLEANING PROPERTY

VINYL, EPOXIDE, METHACRYLATE FUNCTIONAL SILICA AEROGELS FOR THE REMOVAL OF CIPROFLAXACIN FROM WATER BY ADSORPTION

Sert Çok S., Koç F., Len A., Almasy L., Dudás Z., Vinyl, Epoxide, Methacrylate Functional Silica Aerogels For The Removal Of Ciprofloxacin From Water By Adsorption, 2024, to be submitted to..

N₂ Porosimetry

Pore		Sample ID	
Properties	S-VTMS	S-GPTMS	S-TMSPM
BET Apparent Surface Area (m²/g)	892	9.4	19.4
DR Micro Pore area (m ² /g)	54	4.86	13.1
BJH Total Pore Volume (cm ³ /g)	1.02	0.0094	0.026
DR Micro Pore volume (cm ³ /g)	0.32	0.0017	0.0046
BJH Avarage Pore Diameter (nm)	4.32	1.88	2.13
Bulk Density (g/cm ³)	0.094	0.173	0.156
Porosity (%)	96	92	93

Sert Çok S., Koç F., Len A., Almasy L., Dudás Z., Vinyl, Epoxide, Methacrylate Functional Silica Aerogels For The Removal Of Ciprofloxacin From Water By Adsorption, 2024, to be submitted to...

FTIR after antibiotic adsorption

Sert Çok S., Koç F., Len A., Almasy L., Dudás Z., Vinyl, Epoxide, Methacrylate Functional Silica Aerogels For The Removal Of Ciprofloxacin From Water By Adsorption, 2024, to be submitted to..

FTIR

Antibiotic Adsorption Study

Adsorption Parameters

35

Sert Çok S., Koç F., Len A., Almasy L., Dudás Z., Vinyl, Epoxide, Methacrylate Functional Silica Aerogels For The Removal Of Ciprofloxacin From Water By Adsorption, 2024, to be submitted to...

Equilibrium and Kinetic Sorption Studies

				Isoth	erm Model	S			
	<i>a</i>	Lang	Langmuir Parameters			Freundlich Parameters			
Sample ID	че,ехр	q_m	K_L	R^2	$q_{e,the}$	n	K_F	R^2	
	(mg/g)	(<i>mg/g</i>)	(L/mg)		(mg/g)		(<i>mg/g</i>)		
S-VTMS	50.33	58.47	0.095	0.987	67.71	1.803	6.192	0.883	
S-GPTMS	20.72	19.26	0.297	0.977	25.78	2.701	4.617	0.722	
S-TMSPM	42.03	48.54	0.092	0.994	55.74	1.869	5.243	0.907	
S-BARE SILICA	46.77	51.54	0.116	0.992	55.89	2.134	7.253	0.916	

Sert Çok S., Koç F., Len A., Almasy L., Dudás Z., Vinyl, Epoxide, Methacrylate Functional Silica Aerogels For The Removal Of Ciprofloxacin From Water By Adsorption, 2024, to be submitted to..

Regeneration and reusability

Sert Çok S., Koç F., Len A., Almasy L., Dudás Z., Vinyl, Epoxide, Methacrylate Functional Silica Aerogels For The Removal Of Ciprofloxacin From Water By Adsorption, 2024, to be submitted to..

CONCLUSION

Organically modified silica aerogel-like nanomaterials containing vinyl, methyl, epoxide and methacrylate moities have found to be effective in many applications such as:

- ➢ Thermal insulation
- Oil/Organic Solvent Removal
- Pharmaceutically active compounds Removal
- Self Cleaning Surfaces
- Bacteria-repelling Surfaces

Advanced structure-sensitive techniques such as ²⁹Si-NMR, SANS, and SAXS, in addition to basic techniques such as FTIR, N₂ porosimetry or SEM is crucial

- ✤ in establishing structure-activity relationship of these materials
- in deliberately tailoring the porous network and surface chemistry of the silica based nanomaterials for better design for any target application.

Amine, thiol funcitonal silica aerogel adsorbents

THANK YOU!