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After hard work you have got nice data...

File example from Kuklin A., FLNP, JINR, Dubna



You just want to click on a button...

Run the fit



In order to get a nice fit !



However there is a high probability

that you get into trouble...

Hopefully this lecture will help you

understand the fit process and avoid traps.



Summary:

1 - probabilities

2 - data treatments

3 - examples

Most texts and pictures were found in Wikipedia articles, unless otherwise quoted.



Some definitions

- X a discrete random variable

- l its average

- var(X) its variance
It is a measure of its dispersion

- s its standard deviation

-The variance of the sum of two uncorrelated random variables 
is the sum of their variances:

Var(X+Y) = Var(X) + Var(Y)

which is not true for the standard deviation !



Binomial distribution

A binomial distribution with parameters n and p
- is the discrete probability distribution of success
- in a sequence of n independent experiments,
- each asking a yes–no question,
- success (with probability p) or failure (with probability q = 1 − p)

Probability of having k successes in n trials:

Average l = np (if np is an integer)

Variance Var(X) = np.(1-p)

https://en.wikipedia.org/wiki/Binomial_coefficient
https://en.wikipedia.org/wiki/Discrete_probability_distribution
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Experiment_(probability_theory)
https://en.wikipedia.org/wiki/Yes%E2%80%93no_question


Binomial examples



Poisson approximation

In a binomial distribution if n is big and p is small a 
Poisson distribution is a good approximation.
Typically this approximation is good if n>20 and p<0.05

Binomial     n= 10  p = 0.2
Poisson       μ = np = 2



Poisson distribution

A discrete probability distribution for the probability of
- a given number of events
- occurring in a fixed interval of time or space
- if these events occur with a known constant mean rate 
- and independently of the time since the last event.

This is what happens in a gas neutron detector !

Poisson distribution

Average l

Variance Var(X) = l

https://en.wikipedia.org/wiki/Discrete_probability_distribution
https://en.wikipedia.org/wiki/Statistical_independence


Central limit theorem

CLT states that, in many situations, 
when independent random variables are summed up, 
their properly normalized sum tends toward a normal distribution even if the 
original variables themselves are not normally distributed.

Therefore for large values, say  λ>1000, the normal distribution is an excellent 
approximation to the Poisson distribution.
If λ > 10, then the normal distribution is a good approximation if correction is 
performed, i.e., if P(X ≤ x) is replaced by P(X ≤ x + 0.5).

https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Continuity_correction


The normal distribution

Normal distribution:

Average l

Variance σ2

Mean square deviation σ     

« bell » curve

In many detectors (notably gas detectors, but not CCDs !) counting
follows a Poisson distribution law. As soon as the counting rate is
high the « normal law » becomes a good approximation. 
It is much easier to handle. 



Probability functions, p ( k ) 
for the sum of n fair 

6-sided dice

Smoothed profiles of the 
previous graphs are rescaled, 
superimposed and compared 
with a normal distribution 
(black curve).



Problem with the   Poisson -> normal   approximation: 
the normal distribution is symetric

which means that for small numbers
exists a significant non-zero probability for negative occurences !

Impossible in real life !



Fitting a model

Whatever the model appropriate for the observed scattering,
you need a test function to appreciate the quality of the fit.
Such a function is a distance.
Several distances are known,
for 2 points with coordinates {xi}, {yi}:

Main property of a distance: scalar positive function

Discussion about distances in fitting by W.I.F. David in J. Res. Natl. Inst. Stand. Technol. 109, 107-123 (2004) 



Distance for SANS data

Ii   intensity in pixel  i
N   number of data points
p    number of free parameters
{P}       set of parameters
Yi calculated intensity for pixel  i
D Ii uncertainty of Ii

If the random variables  Ii are independent and follow a normal distribution,
assuming that the normal law approximation is valid:

then

This is a good test for the fit.

Least squares



Least squares : how does it work? 

https://www.jmp.com/en_in/statistics-knowledge-portal/what-is-regression/the-method-of-least-squares.html



Fitting processes

1 – steepest descent (gradient)

Obvious method:

Calculate the gradient of the test function and make parameter
increments in the opposite direction.

The main problem is to determine what are « good »  increments. 
Usually one calculates the test function at a set of increments along
the gradient opposite direction, in order to evaluate a good step.

Not efficient. No garantee to  avoid a local minimum of the test 
function.



2 – least squares

Somewhat improved method.

- calculate a developpment
of the χ2 test function up to 2nd order

- calculate the 1st order derivatives
versus the parameters

- hypothesis :  close to the χ2 minimum
all derivatives are 0

- this hypothesis provides a
linear equation system
[α] is the  curvature matrix

- its solution  (matrix inversion)
provides a vector of parameters increments.
[C]  is the  covariance matrix

 
ji

ji

iji

i
pp

pp
p

p








 

222

,

22

2

1
0


















j ji

j

ii pp
p

pdp

d 2222 




0
2


idp

d



With some luck this vector leads to a point in the parameter hyperspace where χ2 is
smaller.  It may not be the case as all this is highly non linear; one may try to 
shorten the vector keeping the same direction…
Then one  repeats (iterates) the process.
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Some problems:
- non linearity
- the minima depths

differentiate best if the pixels 
uncertainties are small

- systematic errors in the data 
or the model  ->  χ2 ≠ 1

- nature of the probability law:
Poisson or… worse
- bad evaluation of the pixel 

uncertainties
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Notably, if the    χ2 is not a quadratic form this process is not efficient 
(the hypothethis and calculation on derivatives are bad)

One prefers the steepest descent method, 
taking a step C  along the 1st derivative vector
C is now simply a scalar.

Levenberg-Marquardt have proposed a clever method
to pass from “steepest descent” to “least square” :

Replace [α]  by [α]’ = [α] + l [I]    
(i.e. multiply the  diagonal elements of the curvature matrix by 1 + l )
1) start with a modest l ~ 1,
2) compute [α] , β (and save it) and χ2 and save them
3) calculate the parameter increments with [α]’ diagonal χ2 elements
4) compute new parameters and the corresponding χ2

5) if the fit has converged, or too many iterations, stop !
6) if the fit improves, keep new parameters, divide l by 10 and return to 2)
7) if the fit worsens, multiply l by 10, return to 3) 
( no new computation of [α] needed,  so it is efficient)
NOTE - to obtain the proper error estimates on parameters
set l = 0 for a final calculation.



Least squares follows A 
(well behaved, else might work
using partial shifts) 
or B (blows up), 
steepest descent follows C 
or D (local minimum), 
Marquardt steers
between B&D or A&C but 
might fall into the local minimum.

least squares steepest descent Levenberg- Marquardt

l is small for least squares or
l is large for steepest descent

This slide and the previous one were « inspired » 
from a talk at FLNP, Dubna, by Dr. Richard Heenan, ISIS Facility,

pj

pi

Schematic Least Square & Steepest Descent,
on a 2 parameters χ2  surface
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SANS experiments

smoothing

Pseudo calibration : 
averaging lines and columns

Before fitting SANS scattering, one has to make basic data corrections : 

the most important is calibration (thanks to a flat scatterer like H
2
O…). 

Others consist in sample background or calibration background substractions.

Smoothing data may help avoid Poisson law. 

Pseudo-calibration decreases the effect of calibration file uncertainties.

High quality experiments exhibit small uncertainties.



Data error bars (uncertainties)
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Everything involved in the correction process will increase the final uncertainties.

In his book about ”Neutron diffraction”, G.E Bacon (Oxford: Clarendon Press, 1955)
already warned that «the uncertainty about background measurement must be as good 

as the uncertainty about sample data»



Parameters error bars

The  parameter error bars are best obtained after a least square fitting converges

Let us consider the χ2 expression:
and the χ2 change when a single 
parameter is changed 2
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and  from the χ2 development
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And as  for Δχ2 ≅ 1 δp1 ≅ 1σ (68% of cases, 1st  standard deviation)
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Limitations of Least-Squares:
- data span many orders of magnitude ->  another distance than the χ2

For instance :absolute value instead of squares of the residuals
Robust fitting (FULLPROF for diffraction, now back to χ2)
- significant outliers are present
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Ii     intensity in pixel i
N     number of data points
P      number of free parameters 
{P}   set of parameters
Yi     calculated intensity in pixel  i
ΔIi    uncertainty of Ii
wi weight
ei estimator / residual

model parameter k ei < k ei > k 

Huber 1.345 wi = 1 wi = k/ei

bisquare 4.685 wi = (1-(ei/k)2)2 wi = 0 

Huber P 1981 Robust statistics (New York: Wiley)
Fox J 2002 An R and S-PLUS Appendix Companion to Applied Regression

Robust fitting proposes to 

modify the minimisation 

function by w
i
weights.



« Parabolic » smoothing

Each pixel intensity is replaced by a weighted
average over the neighbouring pixels

This modifies the uncertainty of pixel i 
which becomes:

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

Table 1
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j
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Pseudo-calibration file

Assume that the detector cells efficiency is mostly due to the pre-amplifiers efficiency. 
For most gaz detector there is one preamplifier for each line and column. Thence the trick:
Calculate 2 vectors as the average of each line         and each column

and build a new calibration file C* as a normalised external product of these 2 vectors
Ĉ is the average of the calibration file

The uncertainty is reduced by a factor equal to the number of cells in a row.
This works very well for calibrators as vanadium or Plexiglas, not so well for H2O as it
exhibits a « cuvette » effect at larger Q.

Bevington P.R., Data reduction and error analysis, McGraw-Hill, (1969)

Lindner P., Leclercq F., ILL



Simulated annealing

Fighting local minima:
Accept worse solutions  to allow for a more extensive search for the optimal solution.
The name and inspiration come from annealing in metallurgy, a technique involving
heating and controlled cooling of a material to improve its properties.

Initialization of the method:
- determine a parameter neighbourhood where the parameters will be picked randomly
- chose a start « temperature » T
- the system energy E will be the function to minimize: χ2 in our case 
- define an  acceptance function P
- if P < random number [0,1] go to the new parameter set

For a given T define a maximum number of trials,  nTrials (it may be one)
- define how to decrease T and a maximum number of steps
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Problem: costly in computing time

http://en.wikipedia.org/wiki/Annealing_(metallurgy)


Important

During experiment:
- pay attention to the statistics, especially for the calibration file
and the sample holder (cuvette) file .
- if this latter is very small versus the calibration forget it !

During preliminary data treatment (corrections)
- if some pixels exhibit small counting rate perform a smoothing of the data, in order to 
avoid Poisson distribution, which may spoil the fit.
- if you feel the calibration file statistics are poor,  try the pseudo-calibration.

During the fit
- if the test function is a χ2 its final  value must be close to 1. 

This is an excellent test of the quality of the model 
and shows that a false minimum has been avoided,

- if it keeps far from 1, it means either
- that the set of parameters is traped in a local minimum
- or that there is a systematic error.

Especially when statistics are poor a fit often goes amok if there are many parameters.
In a first phase keep some parameters static. Run the fit. Finally free all parameters and 
run the fit again.



Origin of systematic errors
- bad centre definition. When the scattering function changes very fast at small q it is
very sensitive to the beam centre position (for instance power law).  
A 2D fit including the centre coordinates usually solves this problem.
- bad model. Gaussian and Lorentzian are very similar at small scattering vector Q, but 
much different at larger Q. Impurities or surface scattering may generate power law
scattering, which must be added to the main model function.
- detector electronics. May happen while uncommon. Erroneous pixels are found mostly
on the detector border; it is easy to remove them during the corrections  stage.

Advantage of 2D
- single I(0)
- use of all pixels of non isotropic data
- higher reliability for parameter comparison in various directions
- centre fit

Ethics
In your model use as little functions and parameters as possible.
It is always possible and meaningless to fit data with a lot of functions and parameters.
If you have 2 models compare them to the data. If both fit inside the data error bars, 
discard the most sophisticated.
If you are not happy with that make again your experiment with better statistics.



Examples

a) Is there any anisotropy in my data?  
b) A problem of systematic error (Porod contamination) and statistics
c) Again a systematic error (centre position). Why it is interesting to substract the model 

to the data. 
d)    The anisotropic scattering by a liquid crystal polymer chain is spoiled by a smectic
Bragg peak
e) 2 data files fitted with a single model
f) Représentation and model function in polar coordinates
g) « Embedded » data files, fitted together
h) SAXS by perfect nanochannels (track etched polymer membranes)
i) SANS by nanochannels (mica) , 2 data files together
g) Is the main chain of polymer nanotubes anisotropic ?
h) Again a systematic error (wrong model). Influence of the statistics of the calibration 

and sample holder file



Is there any anisotropy ?

Pépy G. BNC



Systematic error (wrong model). Influence of correction file statistics.



Poor statistics, Porod contamination

Mauzac M. CNRS



Find the origin of a systematic error…

Noirez L. LLB



Nice polymer chain central scattering, with a smectic Bragg peak near-by

Cotton J.P. LLB



How the shape of a liquid crystal polymer changes with temperature

Noirez L. LLB



Polar representation may be helpful

Kiselev, JINR



Bubbles in W wires. Large Q scale.

Len A. BNC



SAXS by nanochannels

Apel, Kuklin JINR
A track etched

membrane 



SANS by rhombohedric nanochannels in mica

rhomboedric channel orientation 

The data files were obtained at the LLB, Saclay, for two 
orientations of the channels at 90°.

Both files were fitted together, with the same function, 
exchanging  Ra, Rb 

l=1.4nm   D=14m   Ra=45nm   Rb=25nm

C. Trautmann, GSI, Germany



Is the main chain of polymer nanotubes anisotropic ?

Stillings, Germany



Thanks to contributors

Noirez L LLB, Saclay
Martin N LLB, Saclay
Rosta L. Energia, Budapest
Len A. Energia, Budapest
Baroni P.        LLB, Saclay
Papoular R. LLB, Saclay
Islamov A FLNP, JINR, Dubna
Kiselev M FLNP, JINR, Dubna
Kuklin A FLNP, JINR, Dubna
Apel P FLNR, JINR, Dubna
Stillings C Germany
Trautmann C GSI Darmstadt



Thanks to the audience for the attention !

Dear students, it would be nice to tell me wether

- this lecture was interesting
- this lecture was not what you expected
- what was most interesting
- what I may remove

- improvements ?

gpepy@laposte.net


