

Small-Angle Neutron Scattering

Gergely Nagy Neutron Scattering Division Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Contents

- Introduction to neutron scattering and SANS
- SANS instrumentation
- SANS basic theory
- SANS for soft matters and biology examples
- Virtual experiment
- SANS on photosynthetic membranes

Neutrons

- Electric neutrality
- Penetrate deeply into matter
- No Coulomb-barrier
- Interaction with the atomic nuclei
- Interaction with different atoms does not depend systematically on atomic number
- Interaction can be very different for isotopes of the same atom (e.g. H/D)
- Non destructive
- Sensitive to magnetic structures

Neutrons What makes them special for biology?

The diameters of the circles shown scale with the scattering amplitude $f_x(\sin\Theta=0)$ for x rays, and b_{coh}^*10 for neutrons. Hatching indicates negative scattering amplitudes.

From M. V. Avdeev presentation at Central European Training School on neutron techniques

4

Neutrons

- Wavelength crucial parameter for NS techniques
- Reactors, spallation sources neutrons with E ~ MeV
- E < 1 keV is required
- Energy distribution can be modified through thermalisation in moderators
- Maxwellian distribution of velocities

$$E = k_B T = \frac{1}{2}mv^2 = \frac{h^2}{2m\lambda^2} = \frac{\hbar^2 k^2}{2m}$$

$$[E] = meV, [T] = K, [v] = \frac{km}{s}, [\lambda] = \text{\AA}, [k] = \frac{1}{\text{\AA}}$$

$$\lambda = 6.283 \frac{1}{k} = 3.956 \frac{1}{v} = 9.045 \frac{1}{\sqrt{E}} = 30.81 \frac{1}{\sqrt{T}}$$

Neutrons

Wavelength distribution (moderator temperature •

	Neutron energy	Moderator material and temperature
Cold neutons	$E \leq 10 meV$	Liquid H ₂ or D ₂ , $T = 20K$
Thermal neutrons	$10 meV \le E \le 100 meV$	H ₂ O and D ₂ O, $T = 290K$
Hot neutrons	$100meV \le E \le 500meV$	Graphite, $T = 2000K$
Epithermal neutrons	$500 meV \le E$	

From Lovesey, S. W., 1984. Theory of Neutron Scattering from Condensed Matter. Oxford, Clarendon Press

• SANS – ideally cold neutrons $E \leq 10 \, meV$ $\lambda \geq 3 \, \text{\AA}$

$$k \le 2.2 \frac{1}{\text{\AA}}$$

Aim of Small-angle neutron scattering

- "Large" scale structural data: 1-100 nm
 - Shape
 - Size

Vational Laboratory

- Interactions, organization
- NO atomic resolution information
- Typically in continuous medium
- Time averaged information
- Often in situ no specific sample preparation
- Typical objects: Particles, aggregates, etc.
- Objects often randomly oriented
 - 2D detector, but 1D averaged data to reconstruct 3D objects

Aim of Small-angle neutron scattering

- Biology
 - Proteins
 - Model or natural membranes
- Soft matter, food science
 - Colloidal particles
 - Polymers
 - Surfactants
 - Foams
- Geology, mining, construction
 - Porous materials

- Archeology and Arts
 - Ceramics
 - Weapons
 - Sculptures
- Engineering
 - Alloys
 - Irradiated samples
- Magnetic structures
- •
- •

Aim of Small-angle neutron scattering

From Lombardo et al. 2020 Molecules – Open Access

SAS in Nature

- Sun or moon corona
 - SAS from thin clouds each corona light ray is scattered by only one droplet or ice crystal
 - smaller objects -> larger corona
 - <u>https://atoptics.co.uk/droplets/corona.htm</u>
 - https://atoptics.co.uk/droplets/cormoon.htm

SAS in Nature

- Pollen corona
 - Non spherical objects with preferred orientation
 - https://atoptics.co.uk/droplets/corim24.htm
 - https://atoptics.co.uk/droplets/pollen1.htm

11

SANS Instrumentation

SANS Instrument

"Reactor" SANS

- Demonstration videos at:
- https://www.ill.eu/fileadmin/user_upload/ILL/3_Users/Instruments/Instruments_list/00_-• LARGE SCALE STRUCTURES/D11/html5/D11-principle/D11.html
- What setup should we use?
- A priori information about the sample -> • Required q-range, required resolution -> SD, wavelength, collimation, detector offset
- If possible, keep λ constant ٠

Yellow Submarine

From www.bnc.hu

SANS Instrument at a Spallation Source

• ESS Proposed Compact SANS Instrument for Small Sample Volumes

From Klenø, K. et al. Instrument Construction Proposal

- Neutron pulses simultaneous use of a wide wavelength range large dynamic range in scattering vector with single setup
 - Ideal for the study of time-dependent processes
- Time of detection < time-of-flight speed > speed > wavelength
- Time-distance diagram

T vs D graph

Neutron Scattering

From www.bnc.hu

- Low neutron cross-section for various structural materials
- Versatile

• Linear sample changer

From https://neutrons.ornl.gov/eqsans/gallery

• Linear sample changer

See Ünnep et al. 2014 Plant Physiology and Biochemistry

From neutrons.ornl.gov

Sample environment – tensile stage

From neutrons.ornl.gov

21

SANS Basic Theory

Scattering process

Scattering process

24

- Differential scattering cross-section $\frac{d\sigma_s}{d\Omega} = \left|\sum_j b_j e^{i\mathbf{QR}_j}\right|$
- Minimal d-spacing determinable in an experiment $\Delta x \approx \frac{2\pi}{Q_{max}}$
- When $\Delta x >>$ atomic distances -> can be considered as continuum
- Scattering length density SLD $\rho(\mathbf{R}) = \frac{\frac{1}{k}}{v}$ (sum of the scattering lengths of the atoms in the volume element) • $\frac{d\sigma_s}{d\Omega} = \left| \int_{V} \rho(\mathbf{R}) e^{i\mathbf{Q}\mathbf{R}} d^3\mathbf{R} \right|^2$
- Solvent with ρ_0 SLD -> $\frac{d\sigma_s}{d\Omega} = \rho_0^2 \left| \int_V e^{iQR} d^3R \right|^2 = const \times \delta(Q)$
- Solvent with ho_0 SLD and particles with particles $ho({f R})$

•
$$\frac{d\sigma_s}{d\Omega} = \left| \int_V (\rho(\mathbf{R}) - \rho_0) e^{i\mathbf{Q}\mathbf{R}} d^3 \mathbf{R} \right|^2$$

$$\begin{array}{c} \textbf{Contrast} \\ \rho(\textbf{R}) - \rho_0 \end{array}$$

• Refractive index:

air ~ 1.0003, water ~ 1.33, glass ~ 1.5

• Refractive index:

air ~ 1.0003, water ~ 1.33, glass ~ 1.5, vegetable oil ~ 1.47

• Refractive index:

air ~ 1.0003, water ~ 1.33, glass ~ 1.5, vegetable oil ~ 1.47

Babinet's principle

$$\frac{d\sigma_s}{d\Omega} = \left| \int_V (\rho(\mathbf{R}) - \rho_0) e^{i\mathbf{Q}\mathbf{R}} d^3 \mathbf{R} \right|^2$$

• Identical scattering signal (apart from forward and incoherent scattering)

Two phase statistically isotropic system

- Uncorrelated particles
- Scattering length densities ρ_1 and ρ_0 and $\Delta \rho = \rho_1 \rho_0$

•
$$\frac{d\sigma_s}{d\Omega} = \left| \int_{V} (\rho(\mathbf{R}) - \rho_0) e^{i\mathbf{Q}\mathbf{R}} d^3 R \right|^2$$
 simplifies to $\frac{d\sigma_s}{d\Omega} = \left| \int_{V_1} \Delta \rho e^{iQR} dR \right|^2$
• Scattering intensity/unit volume $I(Q) = \frac{\Delta \rho^2}{V} \left| \int_{V_1} e^{iQR} dR \right|^2$

• For a set of N_n identical particles

$$I(Q) = \frac{\Delta \rho^2}{V} N_p \left\langle \left| \int_{V_p} e^{iQR} dR \right|^2 \right\rangle = \frac{V_p^2}{V} \Delta \rho^2 N_p \frac{1}{V_p^2} \left\langle \left| \int_{V_p} e^{iQR} dR \right|^2 \right\rangle = \Phi V_p \Delta \rho^2 P(Q)$$

$$\Phi = \frac{N_p V_p}{V} - \text{volume fraction of the particles}$$

$$P(Q) - \text{particle form factor}$$

Particle Form Factors - Examples

• Sphere with radius R
$$P = \left[3\frac{\sin(QR) - (QR)\cos(QR)}{(QR)^3}\right]^2$$

• Ellipsoid of revolution
$$P = \int_{0}^{\frac{\pi}{2}} P_{sphere}(Q, R(r, \varepsilon, \alpha))\sin \alpha \, d\alpha$$
$$\text{where } R(r, \varepsilon, \alpha) = r\sqrt{\sin^2 \alpha + \varepsilon^2 \cos^2 \alpha}$$

• Cylinder
$$P = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2(QL\cos\alpha)}{(QL\cos\alpha)^2} \frac{4J_1^2(QR\sin\alpha)}{(QL\sin\alpha)^2}\sin \alpha \, d\alpha$$

- This work benefited from the use of the **SasView** application, originally developed under NSF award DMR-0520547. **SasView** contains code developed with funding from the European Union's Horizon 2020 research and innovation programme under the SINE2020 project, grant agreement No 654000.
- M. Doucet et al. SasView Version 5.0.4, Zenodo, DOI:10.5281/zenodo.4467703

Particle Form Factors - Examples

Guinier law

Intensity(cm⁻¹)

CAK KIDGE

33

10-2

 10^{-1}

 $Q(A^{-1})$

100

Small-Angle Neutron Scattering

10⁰

 10^{-1}

 $Q(A^{-1})$

10-2

10-3

Guinier law

- Average contrast to solvent $\overline{\rho}$
- For small Q values $I(Q) = \left| \int_{V} (\rho(\mathbf{R}) \rho_0) \left(1 + i\mathbf{Q}\mathbf{R} \frac{1}{2}(\mathbf{Q}\mathbf{R})^2 + ... \right) d^3R \right|^2$
 - presume center of gravity of volume and $ho(\mathbf{R})$ coincide

$$I(Q) = (\overline{\rho}V)^2 \left(1 - \frac{1}{3} \frac{\mathbf{Q}^2}{\overline{\rho}V} \int_V R^2 (\rho(\mathbf{R}) - \rho_0) d^3R\right)$$

 $\frac{1}{\overline{\rho}V}\int_{V}^{R}R^{2}(\rho(\mathbf{R})-\rho_{0})d^{3}R = R_{G}^{2} \text{ and } R_{G} \text{ is the radius of giration}$

Guinier law

$$I(Q) = I_0 \exp\left(-\frac{R_g^2 Q^2}{3}\right)$$

- In(I) vs Q² plot QR < 1.3
- Validity: low Q ٠

For details see e.g. Jacrot 1976 Rep. Prog. Phys. 39

Guinier law

- For small Q values QR < 1.3
- Guinier law

• In(I) vs Q² plot

35

For details see e.g. Jacrot 1976 Rep. Prog. Phys. 39

Fractal dimensions

• Mass fractals $M \propto R^D$ $I(Q) \propto Q^{-D}$

– long elongated objects Q^{-1}

- 2 D objects Q^{-2}
- Surface fractals $I(Q) \propto Q^{6-D}$
 - For smooth surfaces $\,Q^{-4}\,$
 - Rough fractal interfaces $Q^{-x}, 3 < x < 4$

 $Q^{-x}, x > 4$

- Diffuse interfaces

Sphere – 50 A Resolution, polydispersity, background

37 **CAK RIDGE** National Laboratory

Sphere – 50 A Resolution, polydispersity, background

Structure factor

$$I(Q) = \frac{1}{V} \left| \int_{V} \rho(\mathbf{R}) e^{i\mathbf{Q}\mathbf{R}} d^{3}R \right|^{2}$$

• Correlated particles, N identical particles, at particle i $\mathbf{R} = \mathbf{R}_i + \mathbf{u}$ • $I(Q) = \frac{N_p}{V} \left\langle \frac{1}{N_p} \sum_{i=1}^N \sum_{j=1}^N e^{i\mathbf{Q}(\mathbf{R}_i - \mathbf{R}_j)} \middle| \int_{V_p} \rho(u) e^{iQu} du \middle|^2 \right\rangle$ where 2^{nd} term $\propto P(Q)$ • Structure factor: $S(Q) = \left\langle \frac{1}{N_p} \sum_{i=1}^N \sum_{j=1}^N e^{i\mathbf{Q}(\mathbf{R}_i - \mathbf{R}_j)} \right\rangle = 1 + \left\langle \frac{1}{N_p} \sum_{i=1}^N \sum_{j\neq i}^N e^{i\mathbf{Q}(\mathbf{R}_i - \mathbf{R}_j)} \right\rangle$ $I(Q) = \Phi V_p \Delta \rho^2 P(Q) S(Q)$

> For details see e.g. I. Grillo, Small-Angle Neutron Scattering and Applications in Soft Condensed Matter in Soft-Matter Characterization (Ed.: R. Borsali, R. Pecora) 2008 Springer

Structure factor

- Hard sphere interaction
- Interparticle correlation
- Particle size

Structure factor

41

SANS for Biology and Soft Matter

Neutrons What makes them special for biology?

Adapted from Jeffries et al. 2016 Nat Profoc based on data in Sears VF. Neutron scattering lengths and cross sections. Neutron News. 1992;3:26–37.

43

National Laboratory

Contrast Variation in Biology

- Often hydrogenated sample in H₂O/D₂O mixture
- Complex macromolecules
- Subunits with different SLD
- Partial deuteration
- Contrast matching
- Exchangeable hydrogens
- Alcohol, acid, base

From Castellanos et al. 2017 Comp Struct Biotech J Open Access

• Refractive index:

air ~ 1.0003, water ~ 1.33, glass ~ 1.5, vegetable oil ~ 1.47

• Refractive index:

air ~ 1.0003, water ~ 1.33, glass ~ 1.5, vegetable oil ~ 1.47

SANS kinetics

- Equilibrium chain exchange kinetics of block copolimer micelles
 - poly(ethylene-alt-propylene)-poly(ethylene oxide) (PEP-PEO) in water=N;Ndimethylformamide (DMF)
 - Chain exchange -> contrast lost -> Intensity drops

Courtesy of Joachim Kohlbrecher (PSI, Switzerland) for further details see Lund, R. et al. 2006. Macromolecules

Small-angle Scattering Demonstration

• Hair thickness determination with laser pointer

http://www.lookingatnothing.com/index.php/archives/178

• Computer SAS experiment

http://www.lookingatnothing.com/index.php/archives/991

• Example images

https://bitbucket.org/toQDuj/liveft/src/master/

- Looking At Nothing; Brian Richard Pauw, NIMS, Japan
 - Now: Bundesanstalt für Materialforschung und -prüfung: Berlin, Berlin, DE
- Wifi:

National Laboratory

48

Fourier Camera amahta 4,8 ★

FFT Camera Remy Horton

Thylakoid membrane structure

- Large variations in different organisms
- Lateral heterogeneity, granum stroma separation and quasihelical structure in higher plants
- Stacks of several membranes in unicellular organisms (e.g. diatom)
- Ideal targets for diffraction studies

From Staehelin and Paolillo, Photosynthesis Research, 2020

Bína, D. et al. Sci Rep 6, 25583 (2016)

What questions can be answered with NS?

- Static structural characterization of each system
- Capitalize on the possibility for in vivo experiments
- Effect of stressors on the macroorganisation of thylakoid membranes correlation with photosynthetic processes
 - Illumination under a wide range of light conditions
 - pH variation
 - Heavy metal ions
 - Trace elements
 - Effect of osmoticums and ions involved in membrane stacking

SANS of plant thylakoids

- Suspension, no fixation
- Statistically averaged information
- Magnetic orientation
- 2D scattering signal
- Sectorial averaging
- Instruments: D22, D11 (ILL), SANS I & II (PSI), Yellow Submarine (BNC), KWS II (JCNS, FRM II), EQ-SANS (SNS, ORNL)

Nagy 2011 PhD Thesis

Illumination

pH variation

Unnep et al. 2017 BBA

pH variation

Unnep et al. 2017 BBA

Study of intact leaves

• Monstera deliciosa – climbing rainforest vine

Unnep et al. 2020 Open Biology

State transition in intact algal cells

Nagy et al. 2014 PNAS

Acknowledgements

 Hugh O'Neill, Laura Stingaciu

 Katalin Solymosi, Richard Hembrom

 Győző Garab, Ottó Zsíros, Milán Szabó, Sai Divya Kanna, Bettina Ughy

- Giovanni Finazzi
- Jun Minagawa
- Dorthe Posselt

Lionel Porcar

•

- Renáta Ünnep, Márton Markó
- Bence Fehér

JAK RIDGE

National Laboratory

57

Acknowledgements

• A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.

Notice: This presentation has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Thank you for your attention!

Questions?

