Introduction to Neutron Reflectometry (NR)

Oleksandr Tomchuk

The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

Outline

- •Principles of Neutron Reflectometry
- •Reflectometry of Non-Polarized and Polarized Neutrons from Solid Interfaces
- •Neutron Reflectometry from Interfaces with Liquids
- •Experimental Aspects of Neutron Reflectometry

•Principles of Neutron Reflectometry

- Reflectometry of Non-Polarized and Polarized Neutrons from Solid Interfaces
- •Neutron Reflectometry from Interfaces with Liquids
- •Experimental Aspects of Neutron Reflectometry

Research Objects

sandwich-like structures

Specular reflection

Tight collimation of incident beam over Z-direction

Specular reflection

Tight collimation of incident beam over Z-direction

Off-specular scattering

Roughness should be as minimal as possible!

Off-specular scattering

<u>Correlated roughness</u> $< U_j(x, y)U_j(x', y') > = \sigma^2 e^{-\frac{\tau}{\xi}2H}, \tau = [(x - x')^2 + (y - y')^2]^{\frac{1}{2}}$

- The Hurst parameter, H = 3 –D (D is the surface fractal dimension) is varied between 0 and 1.
- The lateral correlation length ξ acts as a cut-off for the lateral length scale on which an interface begins to look smooth. If $\xi \gg \tau$ the surface is smooth.

Distorted-wave Born approximation (DWBA)

non-distorted

$$\begin{bmatrix} \mathbf{D}_0 - 4\pi \hat{\mathbf{v}}(\mathbf{r}) \end{bmatrix} \Psi(\mathbf{r}) = 0 \qquad \mathbf{D}_0 := \nabla^2 + K^2 \qquad \mathbf{v}(\mathbf{r}) := \frac{m}{2\pi\hbar^2} V(\mathbf{r}) = \sum_j \langle b_j \delta[\mathbf{r} - \mathbf{r}_j(t)] \rangle$$

distorted

$$\hat{\mathbf{v}}(\mathbf{r}) = \bar{\mathbf{v}}(z) + \hat{\mathbf{u}}(\mathbf{r}) \qquad \mathbf{D} := \mathbf{D}_0 - 4\pi \bar{\mathbf{v}}(z) \qquad \mathbf{D}(z)\Psi(\mathbf{r}) = 4\pi \hat{\mathbf{u}}(\mathbf{r})$$
In-plane function
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left| \int \mathrm{d}^3 \mathbf{r} \,\Psi_{\mathrm{i}}(\mathbf{r}) \hat{\mathbf{u}}(\mathbf{r}) \Psi_{\mathrm{f}}^*(\mathbf{r}) \right|^2 \qquad \mathbf{D}(z)\Psi(\mathbf{r}) = 0$$

BornAgain program software G. Pospelov, et al. J. Appl. Cryst. 53 (2020) 262–276

Calculated 2D patterns of NR diffuse scattering from semi-infinite medium of Cu, interface roughness $\sigma = 2$ nm,

in-plane roughness correlation length ξ_{\parallel} = 100 nm (a), ξ_{\parallel} = 1000 nm (b).

Calculations have been made in the Distorted Wave Born approximation (DWBA) using Program BornAgain; https://www.bornagainproject.org/

Grazing incidence small-angle scattering

Tight collimation of incident beam over Z- and Y- directions

R = 10 nm, hexagonal lattice (orientation ({11}, along x). $\xi_{||} = 400$ nm; n = 1 - δ ; $\delta = 6 \times 10^{-4}$; substrate $\delta = 6 \times 10^{-6}$; $\lambda = 1 \text{ A}^{\circ}$, $\alpha_{i} = 0.2^{\circ}$.

Calculations have been made in the Distorted Wave Born approximation (DWBA) using Program BornAgain; https://www.bornagainproject.org/ G. Pospelov, et al. J. Appl. Cryst. 53 (2020) 262–276

Steady-state and TOF modes

Steady-state (SS) mode

 λ is fixed (monochromatization)

 θ -scan (grazing angle)

Time-of-flight (TOF) mode

 $\boldsymbol{\theta} \text{ is fixed}$

 λ -scan

mL

 $\lambda = \frac{h \ TOF}{mL}$ time-of-flight

flight path

Summary to 'Principles of Neutron Reflectometry'

Neutron reflectometry experiment is aimed at determining the scattering length density distribution at planar interfaces.

-

-

- Two equivalent approaches to treat specular neutron reflectivity from planar interfaces exist. Optical approach is an extension of the laws of the geometrical optics of light to the case of neutrons. In quantum mechanical approach, the reflectivity is derived by considering neutron wave functions meeting barriers of the optical potential.
- Off-specular scattering occurs for rough interfaces. It reduces the specular reflectivity. The distribution of off-specular scattering is sensitive to in-plane (lateral) correlations.
- Lateral ordering of nanoscaled objects at interfaces produces 2D diffraction patterns (widened Bragg rods) in GISANS plane

Principles of Neutron Reflectometry

•Reflectometry of Non-Polarized and Polarized Neutrons from Solid Interfaces

•Neutron Reflectometry from Interfaces with Liquids

•Experimental Aspects of Neutron Reflectometry

Reflectivity of arbitrary interface

Born approximation

$$R(q_z) \approx \frac{16\pi^2}{q_z^4} \left| \int_{-\infty}^{+\infty} \left(\frac{d}{dz} \rho(z) \right) e^{-iq_z z} dz \right|^2 \qquad q \gg q_{zc}$$

Small-angle Scattering and Reflectometry

Reflectivity from composite films

Block copolymer (PS-d-b-PBMA) multilayers mixed with nanoparticles (Fe₃O₄, D ~ 5 nm) on Si substrate.

Lauter, H.J.C., Lauter, V., Toperverg, B.P. *Polymer Science: A Comprehensive Reference* (2012) 2, 411

Off-specular scattering from multilayers

V. Lauter-Pasyuk, J. Phys. IV France 1 (2007)

Off-specular scattering in TOF mode

-1

-2

-3

-4

-5

Molecular mixing at a conjugated polymer interface

F8 [100 nm]/ d-PMMA [48 nm] / Si

Initial film

2

 $\theta_r(^0)$

3

e)

20

(ف) ۲

10

5

0

D.James, et al., *Soft Matter* **11**(48), 9393 (2015)

4

After annealing (Yoneda wing is marked by white line)

GISANS

Polymer P(S-b-MMAd) film (thickness 800 nm) on Si.

qy

qz

Penetration depth depends on neutron wavelength

$$z_{1/e} = \frac{\lambda}{2^{1/2} \pi (l_i + l_f)},$$

$$u_{i,f} = \left((\alpha_c^2 - \alpha_{i,f}^2) + \sqrt{(\alpha_{i,f}^2 - \alpha_c^2)^2 + (\lambda \mu / 2\pi)^2} \right)^{1/2}$$

 μ = $\Sigma_{\rm tot}$ - volume adsorption coefficient

Both reflected and refracted beams are measured!

Reflected beam

<u>Horizon</u>

Refracted beam

P.Mueller-Buschbaum, et al., Eur. Phys. J. 167, 107–112 (2009)

Polarized neutrons

Specular reflection. Polarized beam. Tight z-collimation.

Refraction index

$$(n^{\pm})^2 = 1 - [\lambda^2 Nb / \pi \pm (m / 2\pi\hbar^2) \mu B]$$

Nuclear SLD $\rho_n = Nb$

Magnetic SLD $\rho_{\rm m} = (m\mu B/2\pi\hbar^2)$

$$q_{zc}^{\pm} = (q_{zcn}^2 \pm q_{zcm}^2)^{1/2}$$

$$q_{\rm zcn, \ zcm} = 4 (\pi \rho_{\rm n,m})^{1/2}$$

$$R^{\pm}(q_z) = \left| \frac{1 - \sqrt{1 - (q_{zc}^{\pm})^2 / q_z^2}}{1 + \sqrt{1 - (q_{zc}^{\pm})^2 / q_z^2}} \right|^2$$

Reflectivity of arbitrary interface. Polarized neutrons

Born approximation

$$R^{\pm}(q_{z}) = \frac{16\pi^{2}}{q_{z}^{4}} \left| \int_{-\infty}^{+\infty} \left(\frac{d}{dz} [\rho_{n}(z) \pm \rho_{m}(z)] \right) e^{-iq_{z}z} dz \right|^{2} \qquad q >> q_{zc}$$

25

Polarization of neutron beams

Off-specular scattering of polarized neutrons

 $\psi_{\perp i}(z) = \exp(ik_{0z}z) \begin{pmatrix} \psi_{+}^{(i)} \\ \psi_{-}^{(i)} \end{pmatrix};$ - Incident beam Mixed states $\psi_{\perp f}(z) = \exp(-ik_{0z}z) \begin{pmatrix} \psi_{+}^{(f)} \\ \psi^{(f)} \end{pmatrix}$. - Reflected beam

 \implies

Coefficient of reflection

Solutions of the system of Schrödinger equations!

 $\hat{r} = \begin{pmatrix} r_{++} & r_{+-} \\ r & r \end{pmatrix} \qquad \begin{pmatrix} \psi_{+}^{(f)} \\ \psi^{(f)} \end{pmatrix} = \hat{r} \begin{pmatrix} \psi_{+}^{(i)} \\ \psi^{(i)} \end{pmatrix}$

$$R_{++} = R_{+} = |r_{++}|^{2}$$

$$R_{--} = R_{-} = |r_{--}|^{2}$$

reflection from in-plane M-component

Reflectivity

matrix

$$R_{+-} = |r_{+-}|^2$$
$$R_{-+} = |r_{-+}|^2$$

reflection from out-of-plane M-component (e.g. magnetic roughness)

Full polarization analysis

Magnetic multilayers

V. Lauter-Pasyuk, J. Phys. IV France 1 (2007)

Software: FitSuite L. Deák et al, PRB 76 224420 (2007)

Neutron reflectometer

Main units

•Polarizer (spin polarization of neutron beam)

•**Spin-flippers** (change of beam polarization at given polarization after polarizer or sample)

- •Analyzer (analysis of polarization after sample)
- Detector (detection of scattered and transmitted beams)

Neutron reflectometer

GINA reflectometer (BNC, Budapest)

http://mffo.rmki.kfki.hu/gina

Domain structure in thin films with perpendicular anisotropy

D. Navas, PRB 90, 054425 (2014)

Magnetic bilayer with exchange bias

H. Zabel, Materials Today 9 (2006)

GISANS. Polarized neutrons

E. Kentzinger, et al., Physica B 397 (2007) 43-46

Summary to

'Reflectometry of non-polarized and polarized neutrons from solid interfaces'

Three neutron reflectometry modes are efficient in the characterization of the multilayered interface structures at interfaces. In addition to the structure, modulation along the depth profile, the characteristic of the distributions in in-plane and out-of-plane correlations are well determined using specific features in off-specular scattering and GISANS patterns.

Polarized neutron reflectometry is very efficient in the study of magnetic layered interface structures. The characteristics of the magnetic scattering length density distribution at interfaces are related to the magnetization distribution. Thus, the method represents a spatial magnetometry. Principles of Neutron Reflectometry

 Reflectometry of Non-Polarized and Polarized Neutrons from Solid Interfaces

•Neutron Reflectometry from Interfaces with Liquids

•Experimental Aspects of Neutron Reflectometry

Horizontal reflectometers

Steady-State setup - N-REX, MLZ

Horizontal sample plane \rightarrow studies of interfaces with liquids:

- Solid Liquid;
- Air Liquid;
- Liquid Liquid

NR from Solid-Liquid interfaces

Simplest interface: Silicon - Water

Specular reflectivity: contrast variation

Diffuse scattering: long-period non-homogeneities of substrate

TOF mode (GRAINS, Dubna)

M.V. Avdeev, V.I. Bodnarchuk, V.I. Petrenko, I.V. Gapon, O.V. Tomchuk, A.V. Nagornyi, V.A. Ulyanov, L.A. Bulavin, V.L. Aksenov, Crystallography Reports 62 (6) (2017) 1002–1008

Interface Assembling of Magnetic Nanoparticle from Ferrofluids Induced by Non-Homogeneous Magnetic Field

Nanomagnetite (\emptyset 2-200 nm) in transformer oil, $\varphi_m \sim 6\%$ ∇H **10**⁻² 3 neutrons SLD, $\cdot 10^{10}$ cm⁻² Reflectivity 2 10⁻³ B1Stratum with B0Magnetic NanoParticles 20 60 Ζ 40 Buffer space Distance from interface, nm **10**⁻⁴ zero and weak neutrons SLD, $\cdot 10^{10}$ cm⁻² magnetic fields 0.04⁰ 0.04⁰ 0.04⁰ 0.04⁰ 0.04⁰ 0.04⁰ 0.04⁰ 0.04⁰ 0.04⁰ 0.00 0.01 0.02 **B**3 R40.03 q_z, Å 20 Ó 40 60 Ζ Distance from interface, nm

GRAINS, IBR-2, Dubna

higher magnetic flux density (35-75 mT)

A.V.Nagornyi, V.I.Petrenko, M.Rajnak, I.V.Gapon, M.V.Avdeev, et al. Appl. Surf. Sci. 473 (2019) 912–917.

Adsorption of nanoparticles from aqueous magnetic fluids on silicon substrate

NREX+, FRM-II, Munich

Effect of polymer (PEG) modification

PEG – poly(ethylene glycol)

41

M.V. Avdeev, V.I. Petrenko, I.V. Gapon, L.A. Bulavin, A.A. Vorobiev, O. Soltwedel, M. Balasoiu, L. Vekas, V. Zavisova, P. Kopcansky, *Appl. Surf. Sci.* 352 (2015) 49 M.Kubovcikova, I.V.Gapon, V.Zavisova, M.Koneracka, V.I.Petrenko, O.Soltwedel, L.Almasy, M.V. Avdeev,

P.Kopcansky, J. Magn. Magn. Mater. 427 (2017) 67

Amyloidß Peptides in interaction with raft-mime model membranes

V. Rondelli, P. Brocca, S. Motta, et al., Scientific Reports 6, 20997 (2016)

Study of Electrolyte-Electrode Interfaces by NR

Study of Electrolyte-Electrode Interfaces by NR

Study of Electrolyte-Electrode Interfaces by NR

GRAINS TOF Reflectometer, IBR-2, Dubna

Effect of TBAP: neutron reflectometry

tetra-n-butylammonium perchlorate (TBAP)

M.V.Avdeev, Rulev A.A., Bodnarchuk V.I., et al. Appl. Surf. Sci, 424 (2017) 378 M.V. Avdeev, A.A. Rulev, E.E. Ushakova, et al., Appl. Surf. Sci. 486 (2019) 287

Effect of TBAP: neutron reflectometry

Off-specular mode. Solid-liquid interfaces

Smoothening of polyelectrolyte multilayers with molecular additive (glutamic acid) Adsorption of polyelectrolytes on Si from D₂O sample ML: PEI/((PSS/PAH)₂/(dPSS/PAH)) şample ML + GA: PEI/((PSS/PAH)₂/(dPSS/PAH/GA))₃ TREFF, MLZ

N. Paul, A. Paul, S. Mattauch, et al., Soft Matter 9 (2013) 10117

Neutron reflectometry from free surfaces

R.A. Campbell, et al., J. Coll. Interface Sci. 531 (2018) 98-108. 49

Summary to

'Reflectometry from Interfaces with Liquids'

- Neutron reflectometry experiments for interfaces with liquids require special cells and sample environment. The active development of such kind of experiments for soft matter research is due to high penetrating power of neutrons and possibilities for enhancing reflectivity by varying the contrast (using deutaration).
- The behavior of colloidal liquid solutions at interfaces with solids is an important area of research with the practical impact.
- Off specular scattering is sensitive to fine structural effects in liquid-solid interfaces with colloidal solutions.
- Study of structural organization of free surfaces of air-liquid interfaces is of current interest.

-

•Principles of Neutron Reflectometry

 Reflectometry of Non-Polarized and Polarized Neutrons from Solid Interfaces

•Neutron Reflectometry from Interfaces with Liquids

•Experimental Aspects of Neutron Reflectometry

Resolution function: vertical sample geometry

Wavelength resolution:

Resolution function: horizontal sample geometry

Representation of NR data: specular scattering

Representation of NR data: diffuse scattering

For details see F.Ott, S.Kozhevnikov J. Appl. Cryst. 44 (2011) 359-369

Analysis of NR data: matrix formalism for specular reflectivity

 R^2

(Born & Wolf, 'Principles in Optics', 6th Ed, Pergammon, Oxford, 1980)

For *j*-th layer

$$M_{j} = \begin{bmatrix} \cos \beta_{j} & -(i/p_{j})\sin \beta_{j} \\ -ip_{j}\sin \beta_{j} & \cos \beta_{j} \end{bmatrix}$$

$$p_{j} = n_{j}\sin \theta_{j} \qquad \beta_{j} = (2\pi/\lambda)n_{j}d_{j}\sin \theta_{j}$$

$$\mathbf{P}_{j} = n_{j}\sin \theta_{j} \qquad \beta_{j} = (2\pi/\lambda)n_{j}d_{j}\sin \theta_{j}$$
Total reflectivity matrix

$$M = [M_{1}][M_{2}] - - - [M_{n}]$$

$$\mathbf{Reflectivity}$$

$$= \left| \frac{(M_{11} + M_{12}p_{s})p_{0} - (M_{21} + M_{22})p_{s}}{(M_{11} + M_{12}p_{s})p_{0} + (M_{21} + M_{22})p_{s}} \right|^{2}$$

Software: Parrat32, Motofit / IGOR PRO, EFFI, SansView, MAUD ... ⁵⁶

Parrat formalism

Summary to

'Experimental Aspects of Neutron Reflectometry'

- Resolution function of neutron reflectometer contains wavelength and angular components which in optimum should be close. For reflectometers with horizontal sample plane gravitational effect for long-wave neutrons should be taken into account;
- Off-specular scattering patterns can be represented in different systems of coordinates depending on the mode of experiment and specific scattering features;
- Matrix formalism is one of the mostly used approaches for calculating specular reflectivity and fitting it to experimental curves.