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Neutron

NEUTRON IS AN ELEMENTARY PARTICLE

Originated from the nuclei

Freed by nuclear interaction

Not stable in free form

Interacts with nuclei / magnetic
�eld

DATA

Mass: 1.67476 · 10−24 g

Charge: 0 C

Spin: 1/2

Magnetic dipole moment: -1,91315 µn

Half time: 882.9 s
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Sources of neutrons

Fission: 3 neutron / reaction

Spallation: 30 neutron / reaction

Moderatiors

Hot: hot graphite

Thermal: water, heavy water

Cold: liquid H (orto or. para), deuterium,
mesythelene..

Ultracold: Solid deuterium

We use the hot, thermal and cold neutrons for
structural research

Márton Markó (BNC, CER) CETS 2023 3 / 32



Centre for
Energy Research INTRODUCTION TO NEUTRON SCATTERING

Detecting of neutrons

The energy of thermal neutrons is low

Converter is needed

n+10 B →7 Li+ α: BF3 gas, solid B4C,

n+6 Li→3 H + α: ZnS:Li scintillator

n+3 He→3 H + p: 3He gas

n+Gd→ γ, conversione

Detection
Proportional chamber: electron multiplication

Scintillator: light detectors (PEM, diodes,
camera)

Delay-line type
2D position sensitive

3He detector
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Properties of neutron

Particle

mass: mn

velocity: v

E = mnv
2

2

p = mnv

Wave
wavelength: λ -> wavenumber:
k = 2π/lambda

frequency: ν

E = hν = ℏω
p = ℏk

Ψ(r, t) = exp(ikr − ωt
Some useful numbers:

λ = 1Å(thermal): E ≈ 80meV , v ≈ 4km/s, f ≈ 20Thz

λ = 4Å(cold): E ≈ 20meV , v ≈ 1km/s, f ≈ 2Thz

Some useful numbers:

λ = 1Å(thermal): E ≈ 80meV , v ≈ 4km/s, f ≈ 20Thz

λ = 4Å(cold): E ≈ 20meV , v ≈ 1km/s, f ≈ 2Thz
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Interference

Wave

Time period: T

Frequency: f = 1/T

Angular frequency: ω = 2πf

Wavelength: λ

Wavenumber: k

Wave

Ψ = ei(kr−ωt)

Phase:kr − ωt

Phase di�erence: π: destructive interference,
2π: constructive interference
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Neutron - X-ray di�erences

Neutron X-ray

Base of scattering potential charge oscillation

Scattering on nucleus / magnetic �eld electron density

Scattered intensity Isotope - dependent Z2

Penetration depth some cm � mm

Energy @ 1 A 81 meV 12.4 keV

Source Brillance Unit 1010 Unit

Atomic scattering factor isotropic decreasing in backscattering
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Neutron - matter interactions

Absorption:
▶ Activation analysis (NAA, PGAA)
▶ Radiography
▶ Nuclear physics investigations

Scattering
▶ Elastic (Energy of neutron does not change): Investigation of static structure
▶ Inelastic (Energy of neutron changes): Investigation of dynamic structure, excitation in
condensed matter

The interactions are measured with cross section

Microscopic cross section (nucleus): σ [barn=10−24 cm2]:
Number of interactions within a secundum pro unit intensity

Macroscopic cross section (matter): Σ = nσ [1/cm] (sample)
where n [1/cm3] is the nuclear density
Number of interactions within a secundum pro unit intensity and unit volume of the sample
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Scattering

The nuclei scatter the thermal neutrons in spherical wave

Short range interaction ( fm)

The scattering is described by b (in fm units):
b: The scattered amplitude over the amplitude of the incident wave (In the case of X-rays the
scattering is anisotropic due to the size of the electronic shell)

The scattered intensity is given by the scattering cross section: σs = 4πb2

Note that b can be negative, and it can be complex if the nucleus is a high absorber
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Scattering amplitudes (X-ray and Neutron)

Neutron: Isotope sensitivity, non monotonic function of the elemental number. Isotropic

X-ray: scattered by the electronic density: (b ≈ c· elemental number). Anisotropic
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Scattering on the magnetic �eld

E�ect of the magnetic �eld

The component of the magnetic �eld parallel with the neutron spin gives an extra potential
�eld

The component of the magnetic �eld perpendicular to the neutron spin causes a spin-�ip

Magnetic scattering factor:
fm(q) = F (q)sn(e(eh)− h), e = |q|/q, h: spin of the atom

scattering on magnetic atom is not isotropic (like X-ray scattering):
Polarization factor: e((eh)− h)
magnetic form factor: F (q)
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Kinematic Scattering Theory

Gives a simpli�ed model for the scattering on condensed matter

The wave is scattered only once and leaves the sample

Not applicable to di�raction on perfect crystals and re�ectometry
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Scattering on atomic structures

The spherical wave is close to plane wave at large distances

Only the phase di�erences are important at the detector:
kir − kfr = qr

The scattered intensity is measured as a function of q (reciprocal space)

The scattered intensity: |Ψ(−→q )|2
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Scattering on atomic structures

Changing to scattering length density: ρ(−→r ) = Σb
V

If we step with π/q steps, the intensity shows how many times we have to step up and down

large-q: small steps, we see the grass (atomic resolution)

small q: large steps, we see the haystack (nano objects)
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Scattering on atomic structures

If we step with π/q steps, the intensity shows
how many times we have to step up and down

Large-q: small steps, we see the grass (atomic resolution)
Small q: large steps, we see the haystack (nano objects)

Large steps (small q, small angle scattering): we do not see the grass (the atoms)

Small steps (large q, di�raction): we do not see the haystack (nanosized
particles)

Haystacks on the top of the mountain (steps up and down but at large altitude)
the signal is the same: Contrast give the intensity

Random landscape: at every step size we can step up and down
Intensity is constant: incoherent scattering
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Elastic scattering

No energy change
more than 99% of the scattering events in solid samples

Incident and scattered
wavenumbers are the same

Static structure

Di�raction

Small angle scattering

Re�ectometry

The scattered intensity depends only on q:
−→q =

−→
k f −

−→
k i

q = 2k sin(θ)
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Inelastic scattering

The energy of neutrons change
during scattering

Dynamic structure
(molecular vibration, lattice vibration,

di�usien etc..)

Three axis spectrometer

Indirect - direct TOF

Backscattering

Neutron spinecho

The scattered intensity depends on the
momentum and energy transfer:

−→q =
−→
k f −

−→
k i

E = Ef − Ei

Weak intensity in solid samples
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Scattering on moving atomic structures

Example: oscillations (phonons)

Oscillation has momentum and energy (quasy - particle)
Signal is q- and ω dependent
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A little mathematics

Scattered wave function is the Fourier transform of the sample

We see the Intensity: ΨΨ∗

Convolution theory: F(fg) = F ∗G F(f ∗ g) = FG:
▶ Van - Hove rule: Scattered intensity is the Fourier-transform of the autocorrelation function of
the sample I = F < ρ, ρ >

▶ Structure factor (unit cell ∗ lattice
▶ Debeye - Waller e�ect (lattice ∗ atomic movement) <-> Small crystallites (lattice multiplied by
distribution function

Random change: < ρ, ρ >= δ(r)→ I(q) = C

Contrast: < ρ, ρ >= C+ < δρ, δρ >→ I = δ(q) + F < δρ, δρ >
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Properties of scattering function

In�nite lattice gives in�nite latice in q
Just with a strictly given steps gives the same up-down series

Gaussian-like particle gives Gaussian-like particle

Inverse relation: larger particle gives signal on small q, smaller particle gives signal at large q

Complex system: particles at di�erent point (convolution) gives the production of the signal of
particles and the signal of positions

Vice-versa: scattering objects in �nite-range (product): gives the signal of centers smeared
with the signal of scattering objects (convolution)
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Scattering on atomic structures

Example: Di�raction on a single crystal with d lattice spacing

We need the exact step size to see signal

Two times - three times ... smaller steps give the same signal (up down same, same up down...)

Simulated di�raction image of a cubic crystal using TOF di�raction
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Properties of scattering function

In�nite lattice gives in�nite latice in q
Just with a strictly given steps gives the same up-down series

Gaussian-like particle gives Gaussian-like particle

Inverse relation: larger particle gives signal on small q, smaller particle gives signal at large q

Complex system: particles at di�erent point (convolution) gives the production of the signal of
particles and the signal of positions

Vice-versa: scattering objects in �nite-range (product): gives the signal of centers smeared
with the signal of scattering objects (convolution)
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Larger particles

Example: Larger particles (magnetic
scattering, X-ray scattering)

If particle size is comparable to the wavelength,
the intensity decreases in backward scattering
(e.g. X-ray scattering factor)

Example: Large particles (nanoparticles)

If the particle larger than the wavelength, one
cannot see the structure of the particle only it's
shape (Small Angle Scattering)
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Properties of scattering function

In�nite lattice gives in�nite latice in q
Just with a strictly given steps gives the same up-down series

Gaussian-like particle gives Gaussian-like particle

Inverse relation: larger particle gives signal on small q, smaller particle gives signal at large q

Complex system: particles at di�erent point (convolution) gives the production of the signal of
particles and the signal of positions

Vice-versa: scattering objects in �nite-range (product): gives the signal of centers smeared
with the signal of scattering objects (convolution)
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Properties of scattering function: structure factor

for crystals: L is a lattice U shows the heights of peaks of L:
|F (hkl)|2: Structure factor

Real space

→

Reciprocal space
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Properties of scattering function

In�nite lattice gives in�nite latice in q
Just with a strictly given steps gives the same up-down series

Gaussian-like particle gives Gaussian-like particle

Inverse relation: larger particle gives signal on small q, smaller particle gives signal at large q

Complex system: particles at di�erent point (convolution) gives the production of the signal of
particles and the signal of positions

Vice-versa: scattering objects in �nite-range (product): gives the signal of centers smeared
with the signal of scattering objects (convolution)
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Properties of scattering function: non-ideal systems

Use of convolution theorem

Thermal motion: atomic positions are convoluted with a gaussian: peaks at large q are
decreased: Debeye Waller e�ect

The �nite size of a periodic system (e.g. nanocristallites) in�nite lattice is multiplied with the
size distribution function:
Scherrer equation: The width of the peak is: w = 1

d , d: size of cristallites, k≈ 1 is the shape
factor

Debye - Waller→←
Scherrer
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Instrumentation: Monochromators

Single crystal

Heidi di�raktométer Garching

Pyrolithic graphite

Si, Ge

Copper

Nickel

...

Time of �ight (TOF)

Choppers

Velocity selection

Mechanical
velocity selector

Resolution ∆λ = 0.1− 4% Resolution: �exible (∆λ = C) ∆λ
λ = 10%− 20%
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Some examples: Elastic instruments

Monochromatic crystal di�ractometer

Mtest di�ractometer

Monochromator

Moving sample-table to change
wavelength

Moving detector to change angular
range

Time of �ight (TOF)

Di�ractometer

Chopper produces pulses

Large wavelength band

Measurement mostly in one setup
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Some examples: Three Axis Spectrometer

Three axis spectrometer

(crystal - crystal)
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Some examples: Direct TOF spectrometer

Monochromatic beam
▶ TOF
▶ Monochromator

Chopper at sample

Time of �ight from the sample to the
detector
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Thank you for attention

Márton Markó
Centre for Energy Research
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