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Neutron
NEUTRON IS AN ELEMENTARY PARTICLE

e Originated from the nuclei DATA

e Freed by nuclear interaction o Mass: 1.67476 - 1024 g

e Not stable in free form o Charge: 0 C

e Interacts with nuclei / magnetic o Spin: 1/2

field o

o Magnetic dipole moment: -1,91315 u,
o Half time: 882.9 s )
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Sources of neutrons

Moderatiors

o ) e Hot: hot graphite
Fission: 3 neutron / reaction
o Thermal: water, heavy water

Fission e Cold: liquid H (orto or. para), deuterium,
m helene..
= > esythelene
o . .
Tl e . . e Ultracold: Solid deuterium
the compound moderated neutrons F A
nucleus |
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®*) P neutrons. |
~1GaV A evaporation Nuclear reaction Ambient temperature Total reflection

) A=1.8A, v=2200m/s A=570A, v=Tm/s
) - ® proton
hly excited
h'g..,,_{deus ¥ © noutron The neutron and its most frequent names.

They are borrowed from several classifications specified above. j.‘
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Detecting of neutrons

The energy of thermal neutrons is low

Converter is needed

o n+'"B =7 Li+ a: BF; gas, solid B4C,
o n+8 Li =3 H + a: ZnS:Li scintillator
o n+3 He —3 H+p: 2He gas

e n+ Gd — vy, conversione

Detection Delay-line type
2D position sensitive

e Proportional chamber: electron multiplication
3He detector

e Scintillator: light detectors (PEM, diodes,
camera)
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Properties of neutron

Particle

@ mass: my,
o velocity: v
2
_ Mmapv
o F= "o
e p=muyv

Wave

e wavelength: A\ -> wavenumber:
k = 27t /lambda

e frequency: v
o F=hrv=hw
e p=nhk

U(r,t) = exp(ikr — wt
Some useful numbers:

A = 1A(thermal): E ~ 80meV, v ~ 4km/s, f ~ 20Thz

X\ = 4A(cold): E ~ 20meV, v~ 1km/s, f ~ 2Thz
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Interference

Wave v&
In phase
o Time period: T N

Constructive
interference

e Frequency: f = 1/T v@ Destructive
~ . _ 180° out intarference

phase

Angular frequency: w = 27 f
Wavelength: A

Wavenumber: k )
Wave
o U — ei(kr—wt)
e Phase:kr — wt
o Phase difference: 7: destructive interference,

27 constructive interference
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Neutron - X-ray differences

Neutron X-ray
Base of scattering potential charge oscillation
Scattering on nucleus / magnetic field electron density
Scattered intensity Isotope - dependent YA
Penetration depth some cm « mm
Energy @1 A 81 meV 12.4 keV
Source Brillance Unit 10*° Unit
Atomic scattering factor isotropic decreasing in backscattering
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Neutron - matter interactions

@ Absorption:
> Activation analysis (NAA, PGAA)
» Radiography
» Nuclear physics investigations
e Scattering
» Elastic (Energy of neutron does not change): Investigation of static structure
» Inelastic (Energy of neutron changes): Investigation of dynamic structure, excitation in
condensed matter

The interactions are measured with cross section

o Microscopic cross section (nucleus): o [barn=10"2* cm?|:
Number of interactions within a secundum pro unit intensity

e Macroscopic cross section (matter): ¥ = na [1/cm] (sample)
where n [1/cm?®] is the nuclear density
Number of interactions within a secundum pro unit intensity and unit volume of the sample
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Scattering

The nuclei scatter the thermal neutrons in spherical wave

e Short range interaction ( fm)

o The scattering is described by b (in fm units):
b: The scattered amplitude over the amplitude of the incident wave (In the case of X-rays the
scattering is anisotropic due to the size of the electronic shell)

o The scattered intensity is given by the scattering cross section: o, = 4mwb?

Note that b can be negative, and it can be complex if the nucleus is a high absorber
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Scattering amplitudes (X-ray and Neutron)

o Neutron: Isotope sensitivity, non monotonic function of the elemental number. Isotropic

e X-ray: scattered by the electronic density: (b = ¢ elemental number). Anisotropic

Atomic Number
_

1 6 8 22 26 8 82

2
. ” e O © X-rays
Pb

o H C O Ti Fe Ni
k) Hydrogen Carbon Oxygen Titanium Iron Nickel Lead
w

- o o - O O0 o
= (inc) Neutrons
2 46@ 54 e 58
g |1 47e 56@) 60 .
2 e 48@ 57 . 61 @
= 49 62 @

500

The diameters of the circles shown scale with the scattering amplitude f,(sin©=0) for x
rays, and b..,*10 for neutrons. Hatching indicates negative scattering amplitudes.
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Scattering on the magnetic field

Effect of the magnetic field

@ The component of the magnetic field parallel with the neutron spin gives an extra potential
field

@ The component of the magnetic field perpendicular to the neutron spin causes a spin-flip

e Magnetic scattering factor:
fm(d) = F(q)sn(e(eh) —h), e = |q|/q, h: spin of the atom

scattering on magnetic atom is not isotropic (like X-ray scattering):
Polarization factor: e((eh) — h)

magnetic form factor: F(q)

Marton Marké (BNC, CER) CETS 2023

11 /32



Centre for ’j\
gy HoncmmEs k)/ INTRODUCTION TO NEUTRON SCATTERING

Kinematic Scattering Theory
Gives a simplified model for the scattering on condensed matter

The wave is scattered only once and leaves the sample

Not applicable to diffraction on perfect crystals and reflectometry
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Scattering on atomic structures

The spherical wave is close to plane wave at large distances

O =kir — kr=qr

Q

@ Only the phase differences are important at the detector:

kir — kyr = qr
@ The scattered intensity is measured as a function of ¢ (reciprocal space)
o The scattered intensity: |¥(q)[?
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Scattering on atomic structures

b

Changing to scattering length density: p(7’) = =

If we step with 7/q steps, the intensity shows how many times we have to step up and down

o large-q: small steps, we see the grass (atomic resolution)

e small q: large steps, we see the haystack (nano objects)
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Scattering on atomic structures

If we step with /¢ steps, the intensity shows
how many times we have to step up and down

Large-q: small steps, we see the grass (atomic resolution)
Small ¢: large steps, we see the haystack (nano objects)

o Large steps (small g, small angle scattering): we do not see the grass (the atoms)

o Small steps (large q, diffraction): we do not see the haystack (nanosized
particles)

o Haystacks on the top of the mountain (steps up and down but at large altitude)
the signal is the same: Contrast give the intensity

o Random landscape: at every step size we can step up and down
Intensity is constant: incoherent scattering
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Elastic scattering

No energy change

more than 99% of the scattering events in solid samples

Incident and scattered
wavenumbers are the same

Static structure

e Diffraction
o Small angle scattering

o Reflectometry

(a) Elastic Scattering (k'= k) 9~
et
A

ji¢
i

=
sin @ = %@
K . 4xsin @
Q=2ksin® = ———
A lal x
2
k

The scattered intensity depends only on q:
_)Y g y q

T=FK;— k,
q = 2k sin(0)
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Inelastic scattering

The energy of neutrons change
during scattering

Dynamic structure

(molecular vibration, lattice vibration,

diffusien etc..)

o Three axis spectrometer
e Indirect - direct TOF

e Backscattering

@ Neutron spinecho

(b) Inelastic Scattering (k'# k)

Neutron Loses Energy

Neutron Gains Energy
(k<k) (k'>k)

The scattered intensity depends on the
momentum and energy transfer:
T=k;—Ki
E=E;—-E,;

Weak intensity in solid samples
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Scattering on moving atomic structures

Example: oscillations (phonons)

Oscillation has momentum and energy (quasy - particle)
Signal is - and w dependent

A

w(k)
acoustic

-nfa 0 k— m/a
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A little mathematics

Scattered wave function is the Fourier transform of the sample
We see the Intensity: WU¥*
Convolution theory: F(fg) = F G F(f xg) = FG:
» Van - Hove rule: Scattered intensity is the Fourier-transform of the autocorrelation function of
the sample I = F < p,p >
» Structure factor (unit cell x lattice

» Debeye - Waller effect (lattice * atomic movement) <-> Small crystallites (lattice multiplied by
distribution function

e Random change: < p,p >=06(r) = I(q) =C
e Contrast: < p,p >=C+ < dp,0p >— I =05(q) +F < dp,op >
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Properties of scattering function

e Infinite lattice gives infinite latice in q
Just with a strictly given steps gives the same up-down series

o Gaussian-like particle gives Gaussian-like particle
o Inverse relation: larger particle gives signal on small g, smaller particle gives signal at large q

o Complex system: particles at different point (convolution) gives the production of the signal of
particles and the signal of positions

@ Vice-versa: scattering objects in finite-range (product): gives the signal of centers smeared
with the signal of scattering objects (convolution)
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Scattering on atomic structures

Example: Diffraction on a single crystal with d lattice spacing
@ We need the exact step size to see signal

e Two times - three times ... smaller steps give the same signal (up down same, same up down...)

-5 0
q, [1/A]

Simulated diffraction image of a cubic crystal using TOF diffraction
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Properties of scattering function

e Infinite lattice gives infinite latice in q
Just with a strictly given steps gives the same up-down series

o Gaussian-like particle gives Gaussian-like particle
o Inverse relation: larger particle gives signal on small g, smaller particle gives signal at large q

o Complex system: particles at different point (convolution) gives the production of the signal of
particles and the signal of positions

@ Vice-versa: scattering objects in finite-range (product): gives the signal of centers smeared
with the signal of scattering objects (convolution)
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Larger particles

Example: Larger particles (magnetic
scattering, X-ray scattering)
If particle size is comparable to the wavelength,

the intensity decreases in backward scattering
(e.g. X-ray scattering factor)

Example: Large particles (nanoparticles)

If the particle larger than the wavelength, one
cannot see the structure of the particle only it’s
shape (Small Angle Scattering)
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Properties of scattering function

e Infinite lattice gives infinite latice in q
Just with a strictly given steps gives the same up-down series

o Gaussian-like particle gives Gaussian-like particle
o Inverse relation: larger particle gives signal on small g, smaller particle gives signal at large q

e Complex system: particles at different point (convolution) gives the production of the signal of
particles and the signal of positions

@ Vice-versa: scattering objects in finite-range (product): gives the signal of centers smeared
with the signal of scattering objects (convolution)
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Properties of scattering function: structure factor

for crystals: L is a lattice U shows the heights of peaks of L:
|F(hkl)|?: Structure factor

100
> 075
050
025
o
3 2 a1 o 1 3 3

Real space Reciprocal space
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Properties of scattering function

e Infinite lattice gives infinite latice in q
Just with a strictly given steps gives the same up-down series

o Gaussian-like particle gives Gaussian-like particle
o Inverse relation: larger particle gives signal on small g, smaller particle gives signal at large q

e Complex system: particles at different point (convolution) gives the production of the signal of
particles and the signal of positions

@ Vice-versa: scattering objects in finite-range (product): gives the signal of centers smeared
with the signal of scattering objects (convolution)
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Properties of scattering function: non-ideal systems
Use of convolution theorem
e Thermal motion: atomic positions are convoluted with a gaussian: peaks at large q are
decreased: Debeye Waller effect

@ The finite size of a periodic system (e.g. nanocristallites) infinite lattice is multiplied with the
size distribution function:

Scherrer equation: The width of the peak is: w = %, d: size of cristallites, k~ 1 is the shape
factor

I Debye - Waller

{1l <

UL

0.0

-20 -10 o 10 20

-10 -5 0 5 10
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Instrumentation: Monochromators

Single crystal Time of flight (TOF) Velocity selection

Length (m)

T —————
© 01 02 03 o4 o5 05 07
Time (s)

Heidi diffraktométer Garching

e Pyrolithic graphite
o Si, Ge
Choppers | Mechanical
o Copper velocity selector
o Nickel
° .

AN _ 1007 _ 9nOZ

n. fHovihla
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Some examples: Elastic instruments

Monochromatic crystal diffractometer Time of flight (TOF)

Reactor side

‘Trumpet neutron guide

B -

Detector

Sample

chd

4

Beam stop

Diffractometer

Mtest diffractometer

e Monochromator e Chopper produces pulses
e Moving sample-table to change o Large wavelength band
wavelength @ Measurement mostly in one setup

e Moving detector to change angular

A1l oe
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Some examples: Three Axis Spectrometer

Three axis spectrometer

~@4— Neutrons % - % ¥

A

(crystal - crystal)
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Some examples: Direct TOF spectrometer

® Neutron guide NL2au @ Sample position
@ PCR chopper-pair Radial collimator
@ Neutron guide ® Beamstop

@ 1% higher order removal chopper ® Shielding
® 2™ higher order removal and @ Detector bench

frame overlap chopper
® MCR chopper-pair

==
© I 1
] @
4m
@ Monochromatic beam Trawling distanion
> TOF €—— deteclor —> ¢ _ ot 2.8 i
» Monochromator E\me >
‘... .’
o Chopper at sample .
o Time of flight from the sample to the oy ~
ise Puse2 |
detector Futse? e of fight
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Thank you for attention

Marton Marko
Centre for Energy Research
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