

CENTRE FOR ENERGY RESEARCH

INTRODUCTION TO NEUTRON SCATTERING

Márton Markó

Budapest Neutron Centre // Centre for Energy Research

Neutron

NEUTRON IS AN ELEMENTARY PARTICLE

- Originated from the nuclei
- Freed by nuclear interaction
- Not stable in free form
- Interacts with nuclei / magnetic field

DATA

- Mass: $1.67476 \cdot 10^{-24}$ g
- Charge: 0 C
- Spin: 1/2
- Magnetic dipole moment: -1,91315 μ_n
- $\bullet~{\rm Half~time:}~882.9~{\rm s}$

Sources of neutrons

Fission: 3 neutron / reaction

Spallation: 30 neutron / reaction articla Spallation intranuclea cascade inter nuclear fast cascade primary particle (p+) vaporation proton highly excite O neutron nucloue

Moderations

- Hot: hot graphite
- Thermal: water, heavy water
- Cold: liquid H (orto or. para), deuterium, mesythelene..
- Ultracold: Solid deuterium

CETS 2023

Detecting of neutrons

The energy of thermal neutrons is low Converter is needed

- $n + {}^{10}B \rightarrow {}^{7}Li + \alpha$: BF₃ gas, solid B₄C,
- $n + {}^{6}Li \rightarrow {}^{3}H + \alpha$: ZnS:Li scintillator
- $n + {}^{3}He \rightarrow {}^{3}H + p$: ${}^{3}He$ gas
- $n + Gd \rightarrow \gamma, conversione$

Detection

- Proportional chamber: electron multiplication
- Scintillator: light detectors (PEM, diodes, camera)

 $\begin{array}{c} \text{Delay-line type} \\ \text{2D position sensitive} \\ {}^{3}He \text{ detector} \end{array}$

Properties of neutron

Particle

- mass: m_n
- \bullet velocity: v
- $E = \frac{m_n v^2}{2}$

• $p = m_n v$

Wave

- wavelength: λ -> wavenumber: $k = 2\pi/lambda$
- frequency: ν

•
$$E = h\nu = \hbar\omega$$

•
$$\mathbf{p} = \hbar k$$

 $\Psi(r,t) = exp(ikr - \omega t)$ Some useful numbers:

$$\lambda = 1 \text{Å(thermal):} E \approx 80 meV, v \approx 4 km/s, f \approx 20 Thz$$

 $\lambda = 4 \text{Å(cold)}: E \approx 20 meV, v \approx 1 km/s, f \approx 2 Thz$

Interference

Wave

- Time period: T
- Frequency: f = 1/T
- Angular frequency: $\omega = 2\pi f$
- \bullet Wavelength: λ
- Wavenumber: k

Wave

- $\Psi = e^{i(kr \omega t)}$
- Phase: $kr \omega t$
- Phase difference: π : destructive interference, 2π : constructive interference

Neutron - X-ray differences

	$\operatorname{Neutron}$	X-ray
Base of scattering	$\operatorname{potential}$	charge oscillation
Scattering on	nucleus / magnetic field	electron density
Scattered intensity	Isotope - dependent	Z^2
Penetration depth	some cm	« mm
Energy @ 1 A	$81 \mathrm{meV}$	$12.4 \mathrm{keV}$
Source Brillance	Unit	10^{10} Unit
Atomic scattering factor	isotropic	decreasing in backscattering

Neutron - matter interactions

- Absorption:
 - ► Activation analysis (NAA, PGAA)
 - Radiography
 - Nuclear physics investigations
- Scattering
 - ► Elastic (Energy of neutron does not change): Investigation of static structure
 - ► Inelastic (Energy of neutron changes): Investigation of dynamic structure, excitation in condensed matter

The interactions are measured with cross section

- Microscopic cross section (nucleus): σ [barn=10⁻²⁴ cm²]: Number of interactions within a secundum pro unit intensity
- Macroscopic cross section (matter): $\Sigma = n\overline{\sigma} [1/\text{cm}]$ (sample) where n [1/cm³] is the nuclear density

Number of interactions within a secundum pro unit intensity and unit volume of the sample

Scattering

The nuclei scatter the thermal neutrons in spherical wave

- Short range interaction (fm)
- The scattering is described by b (in fm units):

b: The scattered amplitude over the amplitude of the incident wave (In the case of X-rays the scattering is anisotropic due to the size of the electronic shell)

• The scattered intensity is given by the scattering cross section: $\sigma_s = 4\pi b^2$

Note that b can be negative, and it can be complex if the nucleus is a high absorber

Scattering amplitudes (X-ray and Neutron)

- Neutron: Isotope sensitivity, non monotonic function of the elemental number. Isotropic
- X-ray: scattered by the electronic density: $(b \approx c \cdot \text{elemental number})$. Anisotropic Atomic Number

The diameters of the circles shown scale with the scattering amplitude $f_i(sin\Theta=0)$ for x rays, and b_{cob}^*10 for neutrons. Hatching indicates negative scattering amplitudes.

Scattering on the magnetic field

Effect of the magnetic field

- The component of the magnetic field parallel with the neutron spin gives an extra potential field
- The component of the magnetic field perpendicular to the neutron spin causes a spin-flip
- Magnetic scattering factor:

 $f_m(\mathbf{q}) = F(q)s_n(\mathbf{e}(\mathbf{e}\mathbf{h}) - \mathbf{h}), \ e = |q|/q$, h: spin of the atom

scattering on magnetic atom is not isotropic (like X-ray scattering): Polarization factor: $\mathbf{e}((\mathbf{eh}) - \mathbf{h})$ magnetic form factor: F(q)

Kinematic Scattering Theory

Gives a simplified model for the scattering on condensed matter The wave is scattered only once and leaves the sample

Not applicable to diffraction on perfect crystals and reflectometry

The spherical wave is close to plane wave at large distances

- Only the phase differences are important at the detector: $k_i r k_f r = q r$
- The scattered intensity is measured as a function of q (reciprocal space)
- The scattered intensity: $|\Psi(\overrightarrow{q})|^2$

Changing to scattering length density: $\rho(\vec{r}) = \frac{\Sigma b}{V}$

If we step with π/q steps, the intensity shows how many times we have to step up and down

- large-q: small steps, we see the grass (atomic resolution)
- small q: large steps, we see the haystack (nano objects)

If we step with π/q steps, the intensity shows how many times we have to step up and down

Large-q: small steps, we see the grass (atomic resolution) Small q: large steps, we see the haystack (nano objects)

- Large steps (small q, small angle scattering): we do not see the grass (the atoms)
- Small steps (large q, diffraction): we do not see the haystack (nanosized particles)
- Haystacks on the top of the mountain (steps up and down but at large altitude) the signal is the same: Contrast give the intensity
- Random landscape: at every step size we can step up and down Intensity is constant: incoherent scattering

Elastic scattering

No energy change more than 99% of the scattering events in solid samples

The scattered intensity depends only on q:

$$\overrightarrow{q} = \overrightarrow{k}_f - \overrightarrow{k}_i$$

 $q = 2k\sin(\theta)$

Inelastic scattering

The energy of neutrons change during scattering

Dynamic structure (molecular vibration, lattice vibration, diffusien etc..)

- Three axis spectrometer
- \bullet Indirect direct TOF
- Backscattering
- Neutron spinecho

The scattered intensity depends on the momentum and energy transfer: $\overrightarrow{q} = \overrightarrow{k}_f - \overrightarrow{k}_i$ $E = E_f - E_i$ Weak intensity in solid complete

Weak intensity in solid samples

Scattering on moving atomic structures

Example: oscillations (phonons)

A little mathematics

Centre for

Energy Research

- Scattered wave function is the Fourier transform of the sample
- We see the Intensity: $\Psi\Psi^*$
- Convolution theory: $\mathcal{F}(fg) = F * G \mathcal{F}(f * g) = FG$:
 - ▶ Van Hove rule: Scattered intensity is the Fourier-transform of the autocorrelation function of the sample $I = \mathcal{F} < \rho, \rho >$
 - ▶ Structure factor (unit cell * lattice
 - ▶ Debeye Waller effect (lattice * atomic movement) <-> Small crystallites (lattice multiplied by distribution function
- Random change: $< \rho, \rho >= \delta(r) \rightarrow I(q) = C$
- Contrast: $< \rho, \rho >= C + < \delta \rho, \delta \rho > \rightarrow I = \delta(q) + \mathcal{F} < \delta \rho, \delta \rho >$

Properties of scattering function

Centre for

Energy Research

• Infinite lattice gives infinite latice in **q**

Just with a strictly given steps gives the same up-down series

- Gaussian-like particle gives Gaussian-like particle
- Inverse relation: larger particle gives signal on small q, smaller particle gives signal at large q
- Complex system: particles at different point (convolution) gives the production of the signal of particles and the signal of positions
- Vice-versa: scattering objects in finite-range (product): gives the signal of centers smeared with the signal of scattering objects (convolution)

Example: Diffraction on a single crystal with d lattice spacing

- We need the exact step size to see signal
- Two times three times ... smaller steps give the same signal (up down same, same up down...)

Simulated diffraction image of a cubic crystal using TOF diffraction

Properties of scattering function

Centre for

Energy Research

- Infinite lattice gives infinite latice in q Just with a strictly given steps gives the same up-down series
- Gaussian-like particle gives Gaussian-like particle
- Inverse relation: larger particle gives signal on small q, smaller particle gives signal at large q
- Complex system: particles at different point (convolution) gives the production of the signal of particles and the signal of positions
- Vice-versa: scattering objects in finite-range (product): gives the signal of centers smeared with the signal of scattering objects (convolution)

Larger particles

Example: Larger particles (magnetic scattering, X-ray scattering)

If particle size is **comparable** to the wavelength, the intensity decreases in backward scattering (e.g. X-ray scattering factor)

Example: Large particles (nanoparticles)

If the particle larger than the wavelength, one cannot see the structure of the particle only it's shape (Small Angle Scattering)

Properties of scattering function

Centre for

Energy Research

- Infinite lattice gives infinite latice in q Just with a strictly given steps gives the same up-down series
- Gaussian-like particle gives Gaussian-like particle
- Inverse relation: larger particle gives signal on small q, smaller particle gives signal at large q
- Complex system: particles at different point (convolution) gives the production of the signal of particles and the signal of positions
- Vice-versa: scattering objects in finite-range (product): gives the signal of centers smeared with the signal of scattering objects (convolution)

Properties of scattering function: structure factor

for crystals: L is a lattice U shows the heights of peaks of L: $|F(hkl)|^2$: Structure factor

Properties of scattering function

Centre for

Energy Research

- Infinite lattice gives infinite latice in q Just with a strictly given steps gives the same up-down series
- Gaussian-like particle gives Gaussian-like particle
- Inverse relation: larger particle gives signal on small q, smaller particle gives signal at large q
- Complex system: particles at different point (convolution) gives the production of the signal of particles and the signal of positions
- Vice-versa: scattering objects in finite-range (product): gives the signal of centers smeared with the signal of scattering objects (convolution)

Properties of scattering function: non-ideal systems

Use of convolution theorem

- Thermal motion: atomic positions are convoluted with a gaussian: peaks at large q are decreased: Debeye Waller effect
- The finite size of a periodic system (e.g. nanocristallites) infinite lattice is multiplied with the size distribution function:
 Scherrer equation: The width of the peak is: w = ¹/_d, d: size of cristallites, k≈ 1 is the shape factor

Instrumentation: Monochromators

Single crystal

e Provident No.

Heidi diffraktométer Garching

- Pyrolithic graphite
- Si, Ge
- Copper
- Nickel

• ...

 $\frac{\mathbf{R}_{\text{ocolution}} \Lambda}{\text{Marton Marko}} = 0.1 - 10\%$

 $\begin{array}{c} \text{Resolution: flexible } (\Lambda) = C \\ \text{CETS 2023} \end{array}$

Choppers

Velocity selection

 $\Delta\lambda = 10\%$

Some examples: Elastic instruments

Monochromatic crystal diffractometer

- Monochromator
- Moving sample-table to change wavelength
- Moving detector to change angular range Márton Markó (BNC, CER)

Time of flight (TOF)

- Chopper produces pulses
- Large wavelength band
- Measurement mostly in one setup

Some examples: Three Axis Spectrometer

Three axis spectrometer

Some examples: Direct TOF spectrometer

- \bullet Monochromatic beam
 - ► TOF
 - Monochromator
- Chopper at sample
- Time of flight from the sample to the detector

Thank you for attention

Márton Markó Centre for Energy Research