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Neutrons interact with the condensed matter:

• Induce nuclear reactions (capture, fission)

• Scattering (elastic, inelastic)

• Reflection

• Unaffected neutrons pass through the sample
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Attenuation () of the neutron beam depends on:

• absorption (abs)

• scattering (s) NV : number of atoms per unit volume

  tot

VsabsV

tot NN  

• Radiography = „Draw with radiation”

• Radiography is a direct imaging technique, where the 2D visual 

representation of an object is obtained nondestructively by detecting the 

modification of an incident beam as it passes through the matter

• Transforms invisible radiation into visible images

Principle of the radiography
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Attenuation coefficient (note the logarithmic scale) of elements for

thermal neutrons (separate dots - black), for 1 MeV gamma-ray (dotted

line), for 150 kV X-ray (solid line) and for 60 kV X-ray (dashed line)

Physics behind the radiography
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Total microscopic cross section σ [barn] for neutrons with an energy of 25 meV (the interaction

takes place with the atomic nucleus)

Total microscopic cross section σ [barn] for photons with an energy of 100 keV (the interaction takes

place with the electron shell)

Contrasts
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• Mass attenuation coefficient (m2/kg):

μm = μ/ρ, 

ρ: sample density (kg/m3), 

μ: linear attenuation coefficient (1/m)

It has the same value for the solid, liquid or 

gaseous state of a given element.

• Mass-thickness (kg/m2):

dm = ρ×d

d: sample thickness (m)

• Beer-Lambert law

valid for a point detector and a well-collimated, 

thin pencil beam without buildup effect

   m

tot

m

tottr dd
I

I
  expexp

0

Phenomenological formalism
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J.S. Brenizer / Physics Procedia 43 ( 2013 ) 10 – 20

Chronology of neutron radiography
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Neutrons Energy range Wavelength [Å] Velocity [m/s] 

ultra cold ≤ 300 neV ≥ 500 ≤ 8 

very cold 300 neV - 0.12 meV 52.2 – 26.1 7.5 – 152 

cold 0.12 meV - 12 meV 26.1 – 2.6 152 – 1515 

thermal 12 meV - 100 meV 2.6 - 0.9 1515 - 4374 

epithermal 100 meV - 1eV 0.9 - 0.28 4374 - 13.8 103

intermediate 1eV - 0.8MeV 

fast > 0.8MeV 

Classification of neutrons
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•Research reactor (ILL, FRM-II, BNC, ...)

•Spallation sources (ISIS, SINQ, SNS,...)

•Radioactive nuclides (Cf, Ra-Be, Sb-Be)

•Accelerator sources (D-D, D-T reactions)

Neutron sources for imaging



Centre for 
Energy Research

Budapest 
Neutron CentreComponents of a neutron imaging facility

1. Source 2. Moderator 3. Cold source (optional)

4. Collimator 5. Radiation filters 6. Flight tube

7. Sample manipulator 8. Detector 9. Shielding+beam dump

10. Door 11. Shutters 12. Beam Limiters
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The collimator forms a shaped and directional beam out of the neutron

source  (e.g. reactor)

Φ =
Φ0Α

4𝜋𝐿2

𝐴 =
𝜋𝐷2

4

Φ0

Φ
=

𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑓𝑙𝑢𝑥

𝑜𝑢𝑡𝑐𝑜𝑚𝑖𝑛𝑔 𝑓𝑙𝑢𝑥
= 16

𝐿

𝐷

2
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filter diaphragm Outer-collimator
pre-

collimator

Filters
Outer-collimator

1st collimator

2nd collimator

Pinhole collimators

Beam formation
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Neutron Velocity Selector

a device that allows neutrons of defined 

velocity to pass while absorbing all other 

neutrons, used for the purpose of 

producing a monochromatic neutron beam. 

The blades are coated with a strongly 

neutron-absorbing material

Monochromatization (optional)

Pyrolytic graphite (002) crystals

• Mosaicity 0.7°

• Δλ/λ = 1% .. 3%

• Wavelength band: 2.7 … 6.5Å

E. Calzada, ANTARES II, FRM II, Garching

Double crystal monochromator
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Vacuum, or He gas

to reduce

the loss of neutrons
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How close the beam

geometry is to the

ideal point-source

configuration?d

l

D

L d

A larger L/D ratio provides better image resolution 

because image blur (d) is smaller.

l
d

d

Neutron 
flux

Visible light Grayscale 
value

Beam collimation (flight tube case)
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Light-proof box

containing mirror

and CCD optics

and camera

Neutrons hit the screen

(e.g. 2:1 mixture of

ZnS/6LiF)

Conversion into visible

light

That is collected on the

CCD of a camera

The definition of 

L/D for a simple

flight tube is no 

longer valid.

   cD

L

2tan

1


Energy dependent!

Beam div ~ γc

tot. refl. angle for Ni-nat:

γc = 1.73×10-3 rad/Å or 

0.1°/Å

Neutron guide Flight tube

Collimators 

should be 

positioned in 

the flight tube

L

D

Collimators:

• shaping field 

of view

• less flux

• improving L/D

Sample & Tomograph

Beam collimation (neutron guide)
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18

Neutron Periscope @ FRM II
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The curved lines  represent constant values of the 

neutron flux per solid angle.

From PhD. Thesis of  A .Van Overberghe

Neutron flux as function of the beam 
collimation
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Beam profile of guided beams always have horizontal and veritcal stripe structure
More homogenous beam can be obtained with a scatterer - N. Kardjilov (HMI Berlin)

Without graphite 5mm graphite 10mm graphite

Intensity: 100 %                         95 %                              82 %

Better homogeneity of guided beams
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small sample table (few kg)

Heavy-load sample manipulator

(up to few hundred kg)
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• No direct neutron detection possible

• A secondary nuclear process is needed:

capture, fission, collision

• Main neutron imaging processes are using:

• scintillation

• photo-luminiscence by secondary particles +β, γ

• nuclear track detection

• chemical excitation

• charge collection in semi-conductors

Neutron detection
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The result of (digital) radiography:

• 2D image with linear scale (e.g. black/white)

Integrating all layers of the object in beam direction suitable for image post-processing

• Data set as matrix of pixel values containing intensity information

Suitable for quantitative evaluation of the sample content

The limitation of neutron radiography:

• Spatial resolution (finally given by the detection process)

But also limited by the beam collimation, the pixel size and optical systems

• Frame rate (exposure time and readout time)

Limited by the beam intensity, the detector sensitivity and the electronic readout

• Sample size (by the transmission properties of the sample material)

Can be overcome with fast neutrons …

Digital imaging
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image detector

Light-tight box
Sample platform
Scintillator
Mirror
Exchangeable optics
CCD or sCMOS camera

• The impinging neutrons are converted to visible light using a 6LiF/ZnS or Gadox scintillator layer
• The light is reflected out of the neutron beam direction with a mirror
• Collected with optical lenses and detected with a pixelized CCD or sCMOS camera
• Stored as a grayscale image with 16-bit depth (e.g., TIFF)
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S. H. Williams et al, J. of Instrumentation (2012)

Optics for CCD/sCMOS camera
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• microchannel plate is an emerging method that is a digital semiconductor detector array 
with very small pixel sizes

• MediPix collaboration (CERN -> Nova Scientific, WidePix)

• 5 micron channels spaced on 6 micron centers

• pixel detector readout chip working in single 

photon counting mode

• resolution about 100 m, 30 frames per second
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Light from a point source passing through the lens interferes with itself

(diffraction from a circular aperture) creating a ring-shape diffraction pattern,

known as the Airy pattern. The Airy pattern is observable in the far field:

Rayleigh criterion (the angular resolution of an optical system, ):

Two point sources are regarded as just resolved when the principal

diffraction maximum of one image coincides with the first minimum of the

other.
sinΘ =1.22

𝜆

𝑎

, angle of observation
, wavelength 
a, is the diameter of the entrance pupil of the aperture or lens

at rAiry :

𝑅 ≫
𝑎2

𝜆
: far field

Spatial resolution of the system
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• Methods to measure the spatial resolution in 2D:

• Gd Siemens Star test pattern:

• labeled spoke periods of concentric rings

• The pattern gives a qualitative measurement of resolution capability of the system

• Measurements based on a sharp Gd foil edge:

• Distance across the Edge Spread Function (ESF) as defined from 10% to 90% of full
intensity

• Full width at half maximum (FWHM) of the Gaussian peak fit to the Line-Spread
Function (LSF)

• Inverse of the spatial frequency when Modulation Transfer Function (MTF) = 10%

• Spatial resolution in 3D: pile of Ti spheres

34

The spatial resolution of an imaging system

200 m

100 m

Ø 5mm Ø 2mm Ø 1mm Ø 0.7mm

a    b 

c    d 
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Example: CCD camera + optics + 6LiF/ZnS(Ag) scint. in different thicknesses

• The spatial resolution is measured by a sharp edge of a 25-m-thick Gadolinium foil placed 

directly on the aluminum plate of the scintillator 

• ESF was determined from a line profile perpendicular across the edge

• Spatial resolution was determined by calculating the mean value of the 10%–90% responses

Spatial resolution of the system (10%-90%) 
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Several exchangeable scintillator screens to properly detect neutrons and X-rays
Thickness: compromise between exposure time and spatial resolution
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Tomography is an extension of radiography, where the 3D visualization of the

object is achieved using computational algorithms from a series of radiographic

projections acquired as the object is rotated in small angular increments.

Math of 3D data reconstruction
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t

x

y

s



 sincos yxt

 yx,
screen + 
CCD pixels

beam

Intensities in 
grayscale values

Projections (Radon transform):

• line integrals of the attenuation coefficient (x,y)

• perpendicular to t (along s) taken at angle 

• through a slice

Intensity detected:

• Iopenbeam, Idarkbeam, Itransmitted

• projections have to be corrected for:

• inhomogeneity of the beam and the detector

• dark current of the camera 

• neutron flux transmitted  grayscale

• real sample =  (small, homogeneous samples)

 




pathbeam

tot dsyx

tr e
I

I
,

0



 
 
 

 

    







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
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


dxdyyxtyx
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tI

tI
tP

line
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,
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0





darkbeamopenbeam

darkbeamdtransmittetr

II

II

I

I






0

Corrections and projections (Radon 
transform)
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2D pixel detector of the

neutron tomograph

Filling up the frequency domain:

measurement at multiple angles

The 1D Fourier Transform of a 

parallel projection P(t) of a 

distribution (x,y), taken under an 

angle 

a single line (a slice) within the 2D

Fourier Transform of the distribution 

(x,y) that encloses the angle  with 

the u-axis.

=

P(t)

 

S(,)

Fourier slice theorem
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Reverse transformation to the space domain: 

• from interpolated mesh data

• inverse 2D Fourier transform

S(,)  S(u,v) dvduvuSyx e
vyuxi












)(2

),(),(




BUT:

• Direct reverse transformation is too

slow

• Cannot measure infinite number of 

projections to fill up the Fourier space

• There is always noise, scattering

• We need filters: Filtered 

Backprojection (FBP)

• S(, S(u,v), and weight by ||

(ramp filter)

Image reconstruction step-by-step
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Projections at

multiple angles
Slices of the 

object

Visualization 

in the 3D space

P(t) (x,y)

(x,y,z)

Object

Image processing in tomography
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Merowingian style
iron belt buckle

Disk fibula with
garnet inlays

3D visualization with „Volume rendering”
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Data processing can be a very labor- and computationally intense task

Image referencing Minutes, hours

3D reconstruction Minutes, hours

Image processing Hours

Visualization

Analysis

Hours, days

Data processing
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Iron blocks with Al

placeholder sheets

inbetween

IAEA – PSI 3D resolution phantom
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46

PSI 3D resolution phantom: pile of Ti spheres

  
 

 

a: Ø4.997 mm b: Ø2.09 mm c: Ø1.00 mm and Ø0.704 mm 

 

a    b 

c    d 

  
 

 

a: Ø4.997 mm b: Ø2.09 mm c: Ø1.00 mm and Ø0.704 mm 
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Application Number of RR 
involved

Involved / 
Operational, %

Number of 
countries

Education & Training 161 67 51

Neutron Activation Analysis 122 51 54

Radioisotope production 90 37 44

Neutron radiography 68 28 40

Material/fuel testing/irradiations 60 25 25

Neutron scattering 48 21 32

Nuclear Data Measurements 42 18 20

Gem coloration 36 15 22

Si doping 35 15 22

Geochronology 26 11 21

Neutron Therapy 20 8 13

Other 95 40 29

IAEA Research Reactor Database – D. Ridikas

RR application-oriented functions
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E. Lehmann

Neutron imaging facilities around the world 
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X-ray tube

Experiment position

Experiment position

NEUTRA: NEUtron Transmission RAdiography

NEUTRA @ PSI – Thermal neutrons
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Micro-Tomography-

Position

Position for large objects

variable

apertures

1 … 80 mm,

Be filter

Space for Selector

or Chopper

Beam limiters

ICON: Imaging with COld Neutrons

Extreme good resolution (25 m) for small objects

ICON @ PSI – Cold neutrons
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• Beam accessible along flight path

• More possibilities than ANTARES I

• Higher flexibility

• New & lighter shielding material

• Space for experiments & sample environment

• All components on rail system

• He-filled flight tubes, 

• Highly flexible concept for moving, combining
parts and removing parts from the flight tube

Antares II @ FRM-II
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Fast neutron imaging with a uranium converter

T. Bücherl  (2011)

Nectar @ FRM-II
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•Beamline D50

•2D and 3D neutron imaging with a field of view of up to 170x170 mm2, 

and real pixel resolution of 10 microns.

•Complementary 2D and 3D X-ray imaging with a field of view of 

250x300 mm2, and real pixel resolution of 5 microns.
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ODIN @ ESS (from year ?)

• approved in 2013 as one of the three first instruments for 
construction at the European Spallation Source, Lund, Sweden

• unique combination of high flux and specific time structure (energy-
selective imaging)

• Novel event-based imaging detectors not to waste valuable neutrons
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Budapest Research 

Reactor (10 MW)

NORMA

RAD

BNC Neutron imaging facilities
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Available modalities:
• Thermal neutron
• Gamma beam: ~ 8.5 Gy/h
• X-ray tube: 25-225 keV, max. 10 mA

Detector options:
• 16-bit 4 Mpx sCMOS camera
• Highly sensitivity TV-camera
• Image plate

Imaging options:
• Radiography or Tomography of larger objects
• Small FOV, better resolution
• (Sapphire filter to get rid of fast neutrons)

Primary aperture to screen distance: 463 – 539 cm 
Flux: 4.6 – 3.38 × 107 cm-2 s-1

L/D = 170 – 195
Diameter: 195 – 230 mm
subCd/epi = 52

RAD: NR/NT 

station

RAD @ BNC

Sample
position

Reactor

Neutron 
beam
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static imaging: 
● radiography and tomography based on digital sCMOS camera (Andor Neo 5.5) 

● neutron: Li6F/ZnS, Gadox; X-ray: Gadox; gamma-ray: NaI(Cs) crystal

dynamic imaging: 
● radiography based on low-level-light analog TV camera (Vidicon tube) and digital sCMOS

different field of views: 
● 250×250 mm2 (Sigma 50mm)

● 100×100 mm2 (Nikon 105mm)

● 40×40 mm2 (Nikon 300mm)

● 60-250 m spatial resolution

● 1-35 s temporal resolution

Neutron, X-ray imaging at RAD
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Neutron Optics and Radiography for Material Analysis (NORMA) with cold
neutrons

Combination of local element analysis 

by prompt gamma activation analysis 

and

structure analysis by neutron 

radiography/tomography

Unique instrument

Commissioned in 2012 at the cold

neutron guide hall

Flux: 2.7x107 cm-2 s-1

Resolution: 230 m

Field of view: 40x40 mm

L/D ratio: 233
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Higher L/D through less D’s: 
● Changeable primary apertures at the end of the neutron guide  

● Available sizes: 550 mm2 (25×22 mm2), 121.54 mm2 (Ø12.44 mm), 9.95 mm2 (Ø3.54 mm)

● L/D values measured by Gd-foil edge method: 233, 500, 1800

More uniform neutron flux distribution using scatterers: 
● Changeable graphite scatterer sheets upstream to primary apertures

● Available thicknesses: 3 mm, 2 mm and no scatterer in the beam
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Variable L/D ratio at NIPS-NORMA

L/D = 233 L/D = 1832

Le
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Advantages: 
● Better spatial resolution farther from the 

screen (tomography of larger objects!)

● More uniformly irradiated field of view

Disadvantages: 
● Longer exposure times
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Applications
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http://europeanspallationsource.se/sites/default/files/nius_2012.pdf

Which methods are used 

mostly in present applications?

What are the specific requests for the 

improvement of the existing facilities?

Breakdown of use
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PSI NIAG

Applications: science + industry



Centre for 
Energy Research

Budapest 
Neutron Centre

Proof of meteoritic origin of mankind’s earliest (?) iron artefacts, 3200 BC, by neutron and 
X-ray techniques

A predynastic cemetery was excavated near Gerzeh by G.A. Wainwright and J.P. Bushe-Fox in 1911

Principal Proposer: Thilo Rehren – UCL London
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• to be determined the nature of the iron from which these earliest iron beads are made -
can we demonstrate that they are meteoritic in origin, as has been speculated based on
their early date?

• All three artefacts have a central hole along their long axis, not visible during visual 
inspection due to their corrosion. It demonstrate that the beads were made from rolled 
iron sheet, with areas of overlapping metal visible at the centre of the seam UC10740. 

• This would have required repeated hammering with intermittent annealing.

One of the beads had been analysed in the 1920s and 

found to contain about 7.5 wt% Ni

Properties of The Petrie Museum of Egyptian Archaeology, London
Mankind’s earliest iron beads were the 

very first images of NORMA

Rehren et al, Journal of Archaeological Science 40 (2013) 4785-4792
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E. Abraham et al, Appl. Phys. A (2014) 117:963–972

DOI 10.1007/s00339-014-8779-3
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B. Maróti et al, J Radioanal Nucl Chem (2017) 312:367–375
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Cultural heritage – Early Iron Age bronze shield

neutron imageX-ray image

Do we see contrast? Cases if:

1. X-ray – yes, neutron – yes: e.g. bronze (rivet fragments)

2. X-ray – yes, neutron – no: high atomic number (e.g. lead)

3. X-ray – no, neutron – yes: low atomic number (e.g. organic)

Gábor Tarbay, Hungarian National Museum
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neutron image

● Hollow is filled with different materials

● Not seen in the X-ray images organic X-ray image

1. small fibrous-like material

2. a sharp, long and slim wand

3. next to 2 a similar but thicker wand

4. around the bottom of wands a fibrous-like substance

1 2

3

4

Gábor Tarbay, Hungarian National Museum
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Bimodal imaging of a snail shell
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Example: Panczyk et al., INCT – Warsaw

IRRADIATION

Uniform cold /

th neutron field

MEASURE

Delayed γ

”2D image”

SENSITIVITY

High: trace elments

(Cu, Mn, Fe, Hg)

APPLICATIONS

paintings, 

pigments

PAINTING

Neutron beam

graphite scatterer

J. Tintoretto (1519-1594) 

„Portrait of a Venician 

admiral”

Autoradiograph, 12 min after irradiation. Irradiation 

time: 3h. Blackenning mainly due to 56Mn and 64Cu
NAAR system at 

‘MARIA’ reactor, 

Warsaw
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Excavation kit – a plastic 
dinosaur skeleton within 
gypsum

1. Surface – 3D scan

2. Segmentation of the tomogram

3. Engineering analysis of 
the segmented dinosaur 
model

4. 3D-printed dinosaur model

+
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Pore volume distribution based on the NT
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X-ray and neutron radiography, tomography – foams 

Pore size distribution, wall thickness distribution

E. Solórzano et al., Nuclear Instruments and Methods B 324 (2014) 29–34
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Moving basalt2.avi
Moving basalt2.avi
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Engineering – Virtual cuts / real fracture face

80

S3D (stereoscopic 3D) visualization
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Contrast enhancement with a Cd-solution

Images from DNR vs. NORMA

Turbine blade inspection – visualization of casting template remains
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• Process leading accidental situation in 
NPPs: loss of coolant accident (LOCA)

• NR: H-distribution in Zr fuel rod 
cladding around the burst
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NEUTRON

X-RAY

• 19 sectors, 

• 9,85 m long, 

• 700 mm wide,

• 65 mm thick, 

• total weight 115 kg 

water

Balasko, M., Svab, E., Molnar, Gy., & Veres, I. (2005). Classification of defects in honeycombcomposite structure of helicopter rotor blades. 
Nuclear Instruments and Methods in Physics Research, 542A, 45-51
Balasko, M., Veres, I., Molnar, Gy., Balasko, Zs., & Svab, E. (2004). Composite structure ofhelicopter rotor blades studied by neutron and X-ray 
radiography. Physica B: Condensed Matter, 350(1-3), 107-109
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welding of metals
• Macroscopic objects

• Micro-tomography: FOV 27×27 mm2, 1:1 Lens
• Pixel size 9 µm, 10 µm Gadox scintillator, Scan times 15-20 h

Industrial Quality control
Quality control of 
explosive devices

for space applications
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• 100Cr6 high-carbon chromium steel, organic grease -> 
problem for X-rays

• Unexpected damage observed during use of a double 
row bearing, due to insufficient lubrication

• Before taking it apart for further studies (e.g.,
diffraction), the exact geometry can be recorded

• Collaborator: Rogante Engineering Office, Italy

M. Rogante, Z. Kis, L. Szentmiklósi: Neutron imaging of Double-Row Ball Bearings Made of 100Cr6 High Carbon Chromium Steel for
Automotive Application, International NR Newsletter No. 18 February 2023, p 11-13 http://www.isnr.de/images/nr_newsletter/NR18.pdf

http://www.isnr.de/images/nr_newsletter/NR18.pdf
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Probing local density via neutron imaging

• Spray-dried refractory carbide and metal powder mixtures, 
containing tungsten carbide, is compacted and sintered during 
the production of conventional cutting tool inserts

• The friction between the pressing tool and the powder results in 
density gradients in the powder compact, and uneven shrinkage 
during sintering

• To validate the finite element simulation of the pressing 
procedure, the density gradients in the powder compacts must 
be measured with a high spatial resolution. 

• Since Tungsten has a high atomic number, it is hard to penetrate 
with X-rays and even cold neutrons.  

• Calibration of the neutron 
attenuation vs. thickness using 
homogeneous pellets

https://www.youtube.com/watch?v=0QrynzJ_lZ4

https://www.youtube.com/watch?v=0QrynzJ_lZ4
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• Finite element simulations and experimental imaging 
results are in close agreement

Hjalmar Staf, Zoltán Kis, László Szentmiklósi, Bartek Kaplan, Erik Olsson and Per-Lennart Larsson, Determining the density
distribution in cemented carbide powder compacts using 3D neutron imaging, Powder Technology 354 584-590 (2019) 
DOI: 10.1016/j.powtec.2019.06.033 
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a) 50, b) 75,
c) 100, d) 150, 
e) 200 keV X-ray beam

f) thermal neutron 
beam
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Capillary rise in a brick

Water uptake of construction materials

Z. Kis, F. Sciarretta, L. Szentmiklósi: Water uptake experiments of historic construction materials from Venice by 
neutron imaging and PGAI methods, Materials and Structures (2017) 50:159 DOI 10.1617/s11527-017-1004-z 
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High-speed imaging of very fast, singular processes requiring several thousand frames per second

Example: Gun shot - hardly feasible for neutrons!

Problems:

- the number of neutrons/photons in one time window becomes very low, below the detector noise

- in classic detectors, the number of detector pixels that can be read out in one time window becomes very small, drastically decreasing 
resolution

But: New detectors are becoming fast enough (see below), the neutron flux is the main limiting factor!

Stroboscopic imaging of very fast but repetitive processes

Example: Fuel injection / oil flux in a combustion engine

Advantage:

- the number of neutrons/photons in one time window is still very low, but many exposures of the same time window of the periodic process 
may be accumulated on the detector before read-out, thus increasing the available intensity

Disadvantage:

- Only one time window of the periodic process can be recorded in one sequence, the periodic process has to be recorded in a sequence of 
many consecutive time window accumulations, sacrificing most neutrons.

Physical limitations

• Available neutron/photon flux in a time window

• Decay time of scintillation light

• readout speed and gating time of the detector (if applicable)
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A. Kaestner and E. Lehmann, IAEA TM on 
Regional RR Users’ Networks: advances in 
neutron imaging, 26-29 Nov. 2012, Jakarta, 
Indonesia

media1.mp4
media1.mp4
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• Real-time visualization of an engineering object

• p,T,v parameters external controlled

• ANCARA – experimental loop to study the behaviour of 
SCW

• For an improved efficiency of future energy production

M. Balaskó, L. Horváth et al, Physics Procedia 43 ( 2013 ) 254 – 263

Attila Kiss, Márton Balaskó, László Horváth, Zoltán Kis, Attila Aszódi, Experimental investigation of 
the thermal hydraulics of supercritical water under natural circulation in a closed loop, Annals of 
Nuclear Energy, 100 (2) 2017, 178-203,DOI: 10.1016/j.anucene.2016.09.020.
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A. Kiss, Annals of Nuclear Energy 100 (2017) 178–203

Supercritical water @ RAD
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300 mV

3780 mV

4010 mV

4200 mV

4510 mV

4750 mV4650 mV

4740 mV

H. Sommer

Gas formation during charge cycle of Li ion 
battery
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•The camera is triggered by an event in the process

•Many short time exposures accumulated per frame

•Cyclic processes can be faster than real-time imaging

•Different positions can be reached by delay 

Common-rail diesel 

injector nozzle

Stroboscopic imaging – repetitive image acquisition
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• Fired two-stoke engine running idle at 3000 RPM 

• 40 frames created from 32 images each.

• 1 ms exposure time/frame

Chainsaw engine – movie @ ICON, PSI 
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Photo                             Monochromatic Neutrons       Polychromatic 

Neutrons 

The contrast can be adjusted by selecting different wavelenghts
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Neutrons act as waves; due to wave-
particle dualism neutrons can also be
described by matter waves with a
certain wavelength.

In the case of the phase contrast
method, one uses the fact that the
waves which transverse an object have a
different velocity to those which do not,
and therefore have a different
wavelength.

The resulting displacement of the wave
maxima leads to a change of the
propagation direction and therefore to
an angular change.

Klaus Lorenz, FRM II
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A radiograph showing the field lines surrounding a bar

magnet. The magnetic field decreases in strength with

distance from the magnet, resulting in a series of maxima

and minima, where the beam polarization is sequentially

parallel or antiparallel to the analyzer.

Very close to the magnets (where the field is strongest)

the field lines are too close together to be spatially

resolved

(N. Kardjilov)
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• Neutron imaging is a popular and capable 
tool in nondestructive material testing

• 2D/3D Images with 10-200 m resolution

• Contrast scatters substantially by elements

• User facilities operated at large neutron 
centres

• BNC: RAD and NORMA
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Thank you for your attention!


